/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp10/common/vp10_fwd_txfm1d.h" #include "test/vp10_txfm_test.h" using libvpx_test::ACMRandom; using libvpx_test::input_base; using libvpx_test::reference_hybrid_1d; using libvpx_test::TYPE_TXFM; using libvpx_test::TYPE_DCT; using libvpx_test::TYPE_ADST; namespace { const int txfm_type_num = 2; const TYPE_TXFM txfm_type_ls[2] = {TYPE_DCT, TYPE_ADST}; const int txfm_size_num = 5; const int txfm_size_ls[5] = {4, 8, 16, 32, 64}; const TxfmFunc fwd_txfm_func_ls[2][5] = { {vp10_fdct4_new, vp10_fdct8_new, vp10_fdct16_new, vp10_fdct32_new, vp10_fdct64_new}, {vp10_fadst4_new, vp10_fadst8_new, vp10_fadst16_new, vp10_fadst32_new, NULL}}; // the maximum stage number of fwd/inv 1d dct/adst txfm is 12 const int8_t cos_bit[12] = {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14}; const int8_t range_bit[12] = {32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32}; TEST(vp10_fwd_txfm1d, round_shift) { EXPECT_EQ(round_shift(7, 1), 4); EXPECT_EQ(round_shift(-7, 1), -3); EXPECT_EQ(round_shift(7, 2), 2); EXPECT_EQ(round_shift(-7, 2), -2); EXPECT_EQ(round_shift(8, 2), 2); EXPECT_EQ(round_shift(-8, 2), -2); } TEST(vp10_fwd_txfm1d, get_max_bit) { int max_bit = get_max_bit(8); EXPECT_EQ(max_bit, 3); } TEST(vp10_fwd_txfm1d, cospi_arr) { for (int i = 0; i < 7; i++) { for (int j = 0; j < 64; j++) { EXPECT_EQ(cospi_arr[i][j], (int32_t)round(cos(M_PI * j / 128) * (1 << (cos_bit_min + i)))); } } } TEST(vp10_fwd_txfm1d, clamp_block) { int16_t block[5][5] = {{7, -5, 6, -3, 9}, {7, -5, 6, -3, 9}, {7, -5, 6, -3, 9}, {7, -5, 6, -3, 9}, {7, -5, 6, -3, 9}}; int16_t ref_block[5][5] = {{7, -5, 6, -3, 9}, {7, -5, 6, -3, 9}, {7, -4, 2, -3, 9}, {7, -4, 2, -3, 9}, {7, -4, 2, -3, 9}}; int row = 2; int col = 1; int block_size = 3; int stride = 5; clamp_block(block[row] + col, block_size, stride, -4, 2); for (int r = 0; r < stride; r++) { for (int c = 0; c < stride; c++) { EXPECT_EQ(block[r][c], ref_block[r][c]); } } } TEST(vp10_fwd_txfm1d, accuracy) { ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int si = 0; si < txfm_size_num; ++si) { int txfm_size = txfm_size_ls[si]; int32_t *input = new int32_t[txfm_size]; int32_t *output = new int32_t[txfm_size]; double *ref_input = new double[txfm_size]; double *ref_output = new double[txfm_size]; for (int ti = 0; ti < txfm_type_num; ++ti) { TYPE_TXFM txfm_type = txfm_type_ls[ti]; TxfmFunc fwd_txfm_func = fwd_txfm_func_ls[ti][si]; int max_error = 7; const int count_test_block = 5000; if (fwd_txfm_func != NULL) { for (int ti = 0; ti < count_test_block; ++ti) { for (int ni = 0; ni < txfm_size; ++ni) { input[ni] = rnd.Rand16() % input_base - rnd.Rand16() % input_base; ref_input[ni] = static_cast(input[ni]); } fwd_txfm_func(input, output, cos_bit, range_bit); reference_hybrid_1d(ref_input, ref_output, txfm_size, txfm_type); for (int ni = 0; ni < txfm_size; ++ni) { EXPECT_LE( abs(output[ni] - static_cast(round(ref_output[ni]))), max_error); } } } } delete[] input; delete[] output; delete[] ref_input; delete[] ref_output; } } } // namespace