/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #define VP10_FORCE_VPXBOOL_TREEWRITER #include #include #include #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "vp10/common/ans.h" #include "vp10/encoder/treewriter.h" #include "vpx_dsp/bitreader.h" #include "vpx_dsp/bitwriter.h" namespace { typedef std::vector > PvVec; PvVec abs_encode_build_vals(int iters) { PvVec ret; libvpx_test::ACMRandom gen(0x30317076); double entropy = 0; for (int i = 0; i < iters; ++i) { uint8_t p; do { p = gen.Rand8(); } while (p == 0); // zero is not a valid coding probability bool b = gen.Rand8() < p; ret.push_back(std::make_pair(static_cast(p), b)); double d = p / 256.; entropy += -d * log2(d) - (1 - d) * log2(1 - d); } printf("entropy %f\n", entropy); return ret; } bool check_rabs(const PvVec &pv_vec, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); std::clock_t start = std::clock(); for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); ++it) { rabs_write(&a, it->second, 256 - it->first); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay &= rabs_read(&d, 256 - it->first) == it->second; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; printf("rABS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } bool check_rabs_asc(const PvVec &pv_vec, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); std::clock_t start = std::clock(); for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); ++it) { rabs_asc_write(&a, it->second, 256 - it->first); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay &= rabs_asc_read(&d, 256 - it->first) == it->second; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; printf("rABS (asc) size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } bool check_uabs(const PvVec &pv_vec, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); std::clock_t start = std::clock(); for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); ++it) { uabs_write(&a, it->second, 256 - it->first); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay &= uabs_read(&d, 256 - it->first) == it->second; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; printf("uABS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } bool check_vpxbool(const PvVec &pv_vec, uint8_t *buf) { vpx_writer w; vpx_reader r; vpx_start_encode(&w, buf); std::clock_t start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { vpx_write(&w, it->second, 256 - it->first); } std::clock_t enc_time = std::clock() - start; vpx_stop_encode(&w); bool okay = true; vpx_reader_init(&r, buf, w.pos, NULL, NULL); start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay &= vpx_read(&r, 256 - it->first) == it->second; } std::clock_t dec_time = std::clock() - start; printf("VPX size %d enc_time %f dec_time %f\n", w.pos, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return okay; } // TODO(aconverse): replace this with a more representative distribution from // the codec. const rans_sym rans_sym_tab[] = { {16 * 4, 0 * 4}, {100 * 4, 16 * 4}, {70 * 4, 116 *4}, {70 * 4, 186 *4}, }; const int kDistinctSyms = sizeof(rans_sym_tab) / sizeof(rans_sym_tab[0]); std::vector ans_encode_build_vals(const rans_sym *tab, int iters) { std::vector p_to_sym; int i = 0; while (p_to_sym.size() < rans_precision) { p_to_sym.insert(p_to_sym.end(), tab[i].prob, i); ++i; } assert(p_to_sym.size() == rans_precision); std::vector ret; libvpx_test::ACMRandom gen(18543637); for (int i = 0; i < iters; ++i) { int sym = p_to_sym[gen.Rand8() * 4]; ret.push_back(sym); } return ret; } void rans_build_dec_tab(const struct rans_sym sym_tab[], rans_dec_lut dec_tab) { dec_tab[0] = 0; for (int i = 1; dec_tab[i - 1] < rans_precision; ++i) { dec_tab[i] = dec_tab[i - 1] + sym_tab[i - 1].prob; } } bool check_rans(const std::vector &sym_vec, const rans_sym *const tab, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); rans_dec_lut dec_tab; rans_build_dec_tab(tab, dec_tab); std::clock_t start = std::clock(); for (std::vector::const_reverse_iterator it = sym_vec.rbegin(); it != sym_vec.rend(); ++it) { rans_write(&a, &tab[*it]); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { okay &= rans_read(&d, dec_tab) == *it; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; printf("rANS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } void build_tree(vpx_tree_index *tree, int num_syms) { vpx_tree_index i; int sym = 0; for (i = 0; i < num_syms - 1; ++i) { tree[2 * i] = sym--; tree[2 * i + 1] = 2 * (i + 1); } tree[2 * i - 1] = sym; } /* The treep array contains the probabilities of nodes of a tree structured * like: * * * / \ * -sym0 * * / \ * -sym1 * * / \ * -sym2 -sym3 */ void tab2tree(const rans_sym *tab, int tab_size, vpx_prob *treep) { const unsigned basep = rans_precision; unsigned pleft = basep; for (int i = 0; i < tab_size - 1; ++i) { unsigned prob = (tab[i].prob * basep + basep * 2) / (pleft * 4); assert(prob > 0 && prob < 256); treep[i] = prob; pleft -= tab[i].prob; } } struct sym_bools { unsigned bits; int len; }; static void make_tree_bits_tab(sym_bools *tab, int num_syms) { unsigned bits = 0; int len = 0; int i; for (i = 0; i < num_syms - 1; ++i) { bits *= 2; ++len; tab[i].bits = bits; tab[i].len = len; ++bits; } tab[i].bits = bits; tab[i].len = len; } void build_tpb(vpx_prob probs[/*num_syms*/], vpx_tree_index tree[/*2*num_syms*/], sym_bools bit_len[/*num_syms*/], const rans_sym sym_tab[/*num_syms*/], int num_syms) { tab2tree(sym_tab, num_syms, probs); build_tree(tree, num_syms); make_tree_bits_tab(bit_len, num_syms); } bool check_vpxtree(const std::vector &sym_vec, const rans_sym *sym_tab, uint8_t *buf) { vpx_writer w; vpx_reader r; vpx_start_encode(&w, buf); vpx_prob probs[kDistinctSyms]; vpx_tree_index tree[2 * kDistinctSyms]; sym_bools bit_len[kDistinctSyms]; build_tpb(probs, tree, bit_len, sym_tab, kDistinctSyms); std::clock_t start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { vp10_write_tree(&w, tree, probs, bit_len[*it].bits, bit_len[*it].len, 0); } std::clock_t enc_time = std::clock() - start; vpx_stop_encode(&w); vpx_reader_init(&r, buf, w.pos, NULL, NULL); start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { if (vpx_read_tree(&r, tree, probs) != *it) return false; } std::clock_t dec_time = std::clock() - start; printf("VPXtree size %u enc_time %f dec_time %f\n", w.pos, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return true; } class Vp10AbsTest : public ::testing::Test { protected: static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); } virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; } virtual void TearDown() { delete[] buf_; } static const int kNumBools = 100000000; static PvVec pv_vec_; uint8_t *buf_; }; PvVec Vp10AbsTest::pv_vec_; class Vp10AnsTest : public ::testing::Test { protected: static void SetUpTestCase() { sym_vec_ = ans_encode_build_vals(rans_sym_tab, kNumSyms); } virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; } virtual void TearDown() { delete[] buf_; } static const int kNumSyms = 25000000; static std::vector sym_vec_; uint8_t *buf_; }; std::vector Vp10AnsTest::sym_vec_; TEST_F(Vp10AbsTest, Vpxbool) { EXPECT_TRUE(check_vpxbool(pv_vec_, buf_)); } TEST_F(Vp10AbsTest, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); } TEST_F(Vp10AbsTest, RabsAsc) { EXPECT_TRUE(check_rabs_asc(pv_vec_, buf_)); } TEST_F(Vp10AbsTest, Uabs) { EXPECT_TRUE(check_uabs(pv_vec_, buf_)); } TEST_F(Vp10AnsTest, Rans) { EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab, buf_)); } TEST_F(Vp10AnsTest, Vpxtree) { EXPECT_TRUE(check_vpxtree(sym_vec_, rans_sym_tab, buf_)); } } // namespace