/* * (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include #include "av1/encoder/ransac.h" #define MAX_MINPTS 4 #define MAX_DEGENERATE_ITER 10 #define MINPTS_MULTIPLIER 5 //////////////////////////////////////////////////////////////////////////////// // ransac typedef int (*IsDegenerateFunc)(double *p); typedef void (*NormalizeFunc)(double *p, int np, double *T); typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2); typedef int (*FindTransformationFunc)(int points, double *points1, double *points2, double *params); typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points, double *proj, const int n, const int stride_points, const int stride_proj); static void project_points_double_translation(double *mat, double *points, double *proj, const int n, const int stride_points, const int stride_proj) { int i; for (i = 0; i < n; ++i) { const double x = *(points++), y = *(points++); *(proj++) = x + mat[1]; *(proj++) = y + mat[0]; points += stride_points - 2; proj += stride_proj - 2; } } static void project_points_double_rotzoom(double *mat, double *points, double *proj, const int n, const int stride_points, const int stride_proj) { int i; for (i = 0; i < n; ++i) { const double x = *(points++), y = *(points++); *(proj++) = mat[3] * x + mat[2] * y + mat[1]; *(proj++) = -mat[2] * x + mat[3] * y + mat[0]; points += stride_points - 2; proj += stride_proj - 2; } } static void project_points_double_affine(double *mat, double *points, double *proj, const int n, const int stride_points, const int stride_proj) { int i; for (i = 0; i < n; ++i) { const double x = *(points++), y = *(points++); *(proj++) = mat[3] * x + mat[2] * y + mat[1]; *(proj++) = mat[4] * x + mat[5] * y + mat[0]; points += stride_points - 2; proj += stride_proj - 2; } } static void project_points_double_homography(double *mat, double *points, double *proj, const int n, const int stride_points, const int stride_proj) { int i; double x, y, Z, Z_inv; for (i = 0; i < n; ++i) { x = *(points++), y = *(points++); Z_inv = mat[7] * x + mat[6] * y + 1; assert(fabs(Z_inv) > 0.00001); Z = 1. / Z_inv; *(proj++) = (mat[1] * x + mat[0] * y + mat[3]) * Z; *(proj++) = (mat[2] * x + mat[4] * y + mat[4]) * Z; points += stride_points - 2; proj += stride_proj - 2; } } static int get_rand_indices(int npoints, int minpts, int *indices, unsigned int *seed) { int i, j; int ptr = rand_r(seed) % npoints; if (minpts > npoints) return 0; indices[0] = ptr; ptr = (ptr == npoints - 1 ? 0 : ptr + 1); i = 1; while (i < minpts) { int index = rand_r(seed) % npoints; while (index) { ptr = (ptr == npoints - 1 ? 0 : ptr + 1); for (j = 0; j < i; ++j) { if (indices[j] == ptr) break; } if (j == i) index--; } indices[i++] = ptr; } return 1; } static int ransac(double *matched_points, int npoints, int *number_of_inliers, int *best_inlier_mask, double *best_params, const int minpts, const int paramdim, IsDegenerateFunc is_degenerate, NormalizeFunc normalize, DenormalizeFunc denormalize, FindTransformationFunc find_transformation, ProjectPointsDoubleFunc projectpoints) { static const double INLIER_THRESHOLD_NORMALIZED = 0.1; static const double INLIER_THRESHOLD_UNNORMALIZED = 1.0; static const double PROBABILITY_REQUIRED = 0.9; static const double EPS = 1e-12; static const int MIN_TRIALS = 20; const double inlier_threshold = (normalize && denormalize ? INLIER_THRESHOLD_NORMALIZED : INLIER_THRESHOLD_UNNORMALIZED); int N = 10000, trial_count = 0; int i; int ret_val = 0; unsigned int seed = (unsigned int)npoints; int max_inliers = 0; double best_variance = 0.0; double params[MAX_PARAMDIM]; WarpedMotionParams wm; double points1[2 * MAX_MINPTS]; double points2[2 * MAX_MINPTS]; int indices[MAX_MINPTS] = { 0 }; double *best_inlier_set1; double *best_inlier_set2; double *inlier_set1; double *inlier_set2; double *corners1; double *corners2; double *image1_coord; int *inlier_mask; double *cnp1, *cnp2; double T1[9], T2[9]; *number_of_inliers = 0; if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { printf("Cannot find motion with %d matches\n", npoints); return 1; } memset(&wm, 0, sizeof(wm)); best_inlier_set1 = (double *)aom_malloc(sizeof(*best_inlier_set1) * npoints * 2); best_inlier_set2 = (double *)aom_malloc(sizeof(*best_inlier_set2) * npoints * 2); inlier_set1 = (double *)aom_malloc(sizeof(*inlier_set1) * npoints * 2); inlier_set2 = (double *)aom_malloc(sizeof(*inlier_set2) * npoints * 2); corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2); corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2); image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2); inlier_mask = (int *)aom_malloc(sizeof(*inlier_mask) * npoints); if (!(best_inlier_set1 && best_inlier_set2 && inlier_set1 && inlier_set2 && corners1 && corners2 && image1_coord && inlier_mask)) { ret_val = 1; goto finish_ransac; } for (cnp1 = corners1, cnp2 = corners2, i = 0; i < npoints; ++i) { *(cnp1++) = *(matched_points++); *(cnp1++) = *(matched_points++); *(cnp2++) = *(matched_points++); *(cnp2++) = *(matched_points++); } matched_points -= 4 * npoints; if (normalize && denormalize) { normalize(corners1, npoints, T1); normalize(corners2, npoints, T2); } while (N > trial_count) { int num_inliers = 0; double sum_distance = 0.0; double sum_distance_squared = 0.0; int degenerate = 1; int num_degenerate_iter = 0; while (degenerate) { num_degenerate_iter++; if (!get_rand_indices(npoints, minpts, indices, &seed)) { ret_val = 1; goto finish_ransac; } i = 0; while (i < minpts) { int index = indices[i]; // add to list points1[i * 2] = corners1[index * 2]; points1[i * 2 + 1] = corners1[index * 2 + 1]; points2[i * 2] = corners2[index * 2]; points2[i * 2 + 1] = corners2[index * 2 + 1]; i++; } degenerate = is_degenerate(points1); if (num_degenerate_iter > MAX_DEGENERATE_ITER) { ret_val = 1; goto finish_ransac; } } if (find_transformation(minpts, points1, points2, params)) { trial_count++; continue; } projectpoints(params, corners1, image1_coord, npoints, 2, 2); for (i = 0; i < npoints; ++i) { double dx = image1_coord[i * 2] - corners2[i * 2]; double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1]; double distance = sqrt(dx * dx + dy * dy); inlier_mask[i] = distance < inlier_threshold; if (inlier_mask[i]) { inlier_set1[num_inliers * 2] = corners1[i * 2]; inlier_set1[num_inliers * 2 + 1] = corners1[i * 2 + 1]; inlier_set2[num_inliers * 2] = corners2[i * 2]; inlier_set2[num_inliers * 2 + 1] = corners2[i * 2 + 1]; num_inliers++; sum_distance += distance; sum_distance_squared += distance * distance; } } if (num_inliers >= max_inliers && num_inliers > 1) { int temp; double fracinliers, pNoOutliers, mean_distance, variance; assert(num_inliers > 1); mean_distance = sum_distance / ((double)num_inliers); variance = sum_distance_squared / ((double)num_inliers - 1.0) - mean_distance * mean_distance * ((double)num_inliers) / ((double)num_inliers - 1.0); if ((num_inliers > max_inliers) || (num_inliers == max_inliers && variance < best_variance)) { best_variance = variance; max_inliers = num_inliers; memcpy(best_params, params, paramdim * sizeof(*best_params)); memcpy(best_inlier_set1, inlier_set1, num_inliers * 2 * sizeof(*best_inlier_set1)); memcpy(best_inlier_set2, inlier_set2, num_inliers * 2 * sizeof(*best_inlier_set2)); memcpy(best_inlier_mask, inlier_mask, npoints * sizeof(*best_inlier_mask)); assert(npoints > 0); fracinliers = (double)num_inliers / (double)npoints; pNoOutliers = 1 - pow(fracinliers, minpts); pNoOutliers = fmax(EPS, pNoOutliers); pNoOutliers = fmin(1 - EPS, pNoOutliers); assert(fabs(1.0 - pNoOutliers) > 0.00001); temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers)); if (temp > 0 && temp < N) { N = AOMMAX(temp, MIN_TRIALS); } } } trial_count++; } find_transformation(max_inliers, best_inlier_set1, best_inlier_set2, best_params); if (normalize && denormalize) { denormalize(best_params, T1, T2); } *number_of_inliers = max_inliers; finish_ransac: aom_free(best_inlier_set1); aom_free(best_inlier_set2); aom_free(inlier_set1); aom_free(inlier_set2); aom_free(corners1); aom_free(corners2); aom_free(image1_coord); aom_free(inlier_mask); return ret_val; } static int is_collinear3(double *p1, double *p2, double *p3) { static const double collinear_eps = 1e-3; const double v = (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]); return fabs(v) < collinear_eps; } static int is_degenerate_translation(double *p) { return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2; } static int is_degenerate_affine(double *p) { return is_collinear3(p, p + 2, p + 4); } static int is_degenerate_homography(double *p) { return is_collinear3(p, p + 2, p + 4) || is_collinear3(p, p + 2, p + 6) || is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6); } int ransac_translation(double *matched_points, int npoints, int *number_of_inliers, int *best_inlier_mask, double *best_params) { return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask, best_params, 3, 2, is_degenerate_translation, NULL, // normalize_homography, NULL, // denormalize_rotzoom, find_translation, project_points_double_translation); } int ransac_rotzoom(double *matched_points, int npoints, int *number_of_inliers, int *best_inlier_mask, double *best_params) { return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask, best_params, 3, 4, is_degenerate_affine, NULL, // normalize_homography, NULL, // denormalize_rotzoom, find_rotzoom, project_points_double_rotzoom); } int ransac_affine(double *matched_points, int npoints, int *number_of_inliers, int *best_inlier_mask, double *best_params) { return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask, best_params, 3, 6, is_degenerate_affine, NULL, // normalize_homography, NULL, // denormalize_affine, find_affine, project_points_double_affine); } int ransac_homography(double *matched_points, int npoints, int *number_of_inliers, int *best_inlier_mask, double *best_params) { const int result = ransac(matched_points, npoints, number_of_inliers, best_inlier_mask, best_params, 4, 8, is_degenerate_homography, NULL, // normalize_homography, NULL, // denormalize_homography, find_homography, project_points_double_homography); if (!result) { // normalize so that H33 = 1 int i; const double m = 1.0 / best_params[8]; assert(fabs(best_params[8]) > 0.00001); for (i = 0; i < 8; ++i) best_params[i] *= m; best_params[8] = 1.0; } return result; }