/* * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ /* clang-format off */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include "aom_dsp/entdec.h" #include "aom_dsp/entenc.h" #include "av1/common/odintrin.h" #include "av1/common/pvq.h" #include "pvq_encoder.h" static void od_encode_pvq_split(od_ec_enc *ec, od_pvq_codeword_ctx *adapt, int count, int sum, int ctx) { int shift; int rest; int fctx; if (sum == 0) return; shift = OD_MAXI(0, OD_ILOG(sum) - 3); if (shift) { rest = count & ((1 << shift) - 1); count >>= shift; sum >>= shift; } fctx = 7*ctx + sum - 1; od_encode_cdf_adapt(ec, count, adapt->pvq_split_cdf[fctx], sum + 1, adapt->pvq_split_increment); if (shift) od_ec_enc_bits(ec, rest, shift); } void od_encode_band_pvq_splits(od_ec_enc *ec, od_pvq_codeword_ctx *adapt, const int *y, int n, int k, int level) { int mid; int i; int count_right; if (n <= 1 || k == 0) return; if (k == 1 && n <= 16) { int cdf_id; int pos; cdf_id = od_pvq_k1_ctx(n, level == 0); for (pos = 0; !y[pos]; pos++); OD_ASSERT(pos < n); od_encode_cdf_adapt(ec, pos, adapt->pvq_k1_cdf[cdf_id], n, adapt->pvq_k1_increment); } else { mid = n >> 1; count_right = k; for (i = 0; i < mid; i++) count_right -= abs(y[i]); od_encode_pvq_split(ec, adapt, count_right, k, od_pvq_size_ctx(n)); od_encode_band_pvq_splits(ec, adapt, y, mid, k - count_right, level + 1); od_encode_band_pvq_splits(ec, adapt, y + mid, n - mid, count_right, level + 1); } } /** Encodes the tail of a Laplace-distributed variable, i.e. it doesn't * do anything special for the zero case. * * @param [in,out] enc range encoder * @param [in] x variable to encode (has to be positive) * @param [in] decay decay factor of the distribution in Q8 format, * i.e. pdf ~= decay^x * @param [in] max maximum possible value of x (used to truncate * the pdf) */ void od_laplace_encode_special(od_ec_enc *enc, int x, unsigned decay, int max) { int shift; int xs; int ms; int sym; const uint16_t *cdf; shift = 0; if (max == 0) return; /* We don't want a large decay value because that would require too many symbols. However, it's OK if the max is below 15. */ while (((max >> shift) >= 15 || max == -1) && decay > 235) { decay = (decay*decay + 128) >> 8; shift++; } OD_ASSERT(x <= max || max == -1); decay = OD_MINI(decay, 254); decay = OD_MAXI(decay, 2); xs = x >> shift; ms = max >> shift; cdf = EXP_CDF_TABLE[(decay + 1) >> 1]; OD_LOG((OD_LOG_PVQ, OD_LOG_DEBUG, "decay = %d", decay)); do { sym = OD_MINI(xs, 15); { int i; OD_LOG((OD_LOG_PVQ, OD_LOG_DEBUG, "%d %d %d %d %d\n", x, xs, shift, sym, max)); for (i = 0; i < 16; i++) { OD_LOG_PARTIAL((OD_LOG_PVQ, OD_LOG_DEBUG, "%d ", cdf[i])); } OD_LOG_PARTIAL((OD_LOG_PVQ, OD_LOG_DEBUG, "\n")); } if (ms > 0 && ms < 15) { /* Simple way of truncating the pdf when we have a bound */ od_ec_encode_cdf_unscaled(enc, sym, cdf, ms + 1); } else { od_ec_encode_cdf_q15(enc, sym, cdf, 16); } xs -= 15; ms -= 15; } while (sym >= 15 && ms != 0); if (shift) od_ec_enc_bits(enc, x & ((1 << shift) - 1), shift); } /** Encodes a Laplace-distributed variable for use in PVQ * * @param [in,out] enc range encoder * @param [in] x variable to encode (including sign) * @param [in] ExQ8 expectation of the absolute value of x in Q8 * @param [in] K maximum value of |x| */ void od_laplace_encode(od_ec_enc *enc, int x, int ex_q8, int k) { int j; int shift; int xs; uint16_t cdf[16]; int sym; int decay; int offset; /* shift down x if expectation is too high */ shift = OD_ILOG(ex_q8) - 11; if (shift < 0) shift = 0; /* Apply the shift with rounding to Ex, K and xs */ ex_q8 = (ex_q8 + (1 << shift >> 1)) >> shift; k = (k + (1 << shift >> 1)) >> shift; xs = (x + (1 << shift >> 1)) >> shift; decay = OD_MINI(254, 256*ex_q8/(ex_q8 + 256)); offset = LAPLACE_OFFSET[(decay + 1) >> 1]; for (j = 0; j < 16; j++) { cdf[j] = EXP_CDF_TABLE[(decay + 1) >> 1][j] - offset; } sym = xs; if (sym > 15) sym = 15; /* Simple way of truncating the pdf when we have a bound */ if (k != 0) od_ec_encode_cdf_unscaled(enc, sym, cdf, OD_MINI(k + 1, 16)); if (shift) { int special; /* Because of the rounding, there's only half the number of possibilities for xs=0 */ special = xs == 0; if (shift - special > 0) { od_ec_enc_bits(enc, x - (xs << shift) + (!special << (shift - 1)), shift - special); } } /* Handle the exponentially-decaying tail of the distribution */ OD_ASSERT(xs - 15 <= k - 15); if (xs >= 15) od_laplace_encode_special(enc, xs - 15, decay, k - 15); } static void laplace_encode_vector_delta(od_ec_enc *enc, const od_coeff *y, int n, int k, int32_t *curr, const int32_t *means) { int i; int prev; int sum_ex; int sum_c; int first; int k_left; int coef; prev = 0; sum_ex = 0; sum_c = 0; first = 1; k_left = k; coef = 256*means[OD_ADAPT_COUNT_Q8]/ (1 + means[OD_ADAPT_COUNT_EX_Q8]); coef = OD_MAXI(coef, 1); for (i = 0; i < n; i++) { if (y[i] != 0) { int j; int count; int mag; mag = abs(y[i]); count = i - prev; if (first) { int decay; int ex = coef*(n - prev)/k_left; if (ex > 65280) decay = 255; else { decay = OD_MINI(255, (int)((256*ex/(ex + 256) + (ex>>5)*ex/((n + 1)*(n - 1)*(n - 1))))); } /*Update mean position.*/ OD_ASSERT(count <= n - 1); od_laplace_encode_special(enc, count, decay, n - 1); first = 0; } else od_laplace_encode(enc, count, coef*(n - prev)/k_left, n - prev - 1); sum_ex += 256*(n - prev); sum_c += count*k_left; od_ec_enc_bits(enc, y[i] < 0, 1); for (j = 0; j < mag - 1; j++) { od_laplace_encode(enc, 0, coef*(n - i)/(k_left - 1 - j), n - i - 1); sum_ex += 256*(n - i); } k_left -= mag; prev = i; if (k_left == 0) break; } } if (k > 0) { curr[OD_ADAPT_COUNT_Q8] = 256*sum_c; curr[OD_ADAPT_COUNT_EX_Q8] = sum_ex; } else { curr[OD_ADAPT_COUNT_Q8] = OD_ADAPT_NO_VALUE; curr[OD_ADAPT_COUNT_EX_Q8] = OD_ADAPT_NO_VALUE; } curr[OD_ADAPT_K_Q8] = 0; curr[OD_ADAPT_SUM_EX_Q8] = 0; } /** Encodes a vector of integers assumed to come from rounding a sequence of * Laplace-distributed real values in decreasing order of variance. * * @param [in,out] enc range encoder * @param [in] y vector to encode * @param [in] N dimension of the vector * @param [in] K sum of the absolute value of components of y * @param [out] curr Adaptation context output, may alias means. * @param [in] means Adaptation context input. */ void od_laplace_encode_vector(od_ec_enc *enc, const od_coeff *y, int n, int k, int32_t *curr, const int32_t *means) { int i; int sum_ex; int kn; int exp_q8; int mean_k_q8; int mean_sum_ex_q8; int ran_delta; ran_delta = 0; if (k <= 1) { laplace_encode_vector_delta(enc, y, n, k, curr, means); return; } sum_ex = 0; kn = k; /* Estimates the factor relating pulses_left and positions_left to E(|x|) */ mean_k_q8 = means[OD_ADAPT_K_Q8]; mean_sum_ex_q8 = means[OD_ADAPT_SUM_EX_Q8]; if (mean_k_q8 < 1 << 23) exp_q8 = 256*mean_k_q8/(1 + mean_sum_ex_q8); else exp_q8 = mean_k_q8/(1 + (mean_sum_ex_q8 >> 8)); for (i = 0; i < n; i++) { int ex; int x; if (kn == 0) break; if (kn <= 1 && i != n - 1) { laplace_encode_vector_delta(enc, y + i, n - i, kn, curr, means); ran_delta = 1; break; } x = abs(y[i]); /* Expected value of x (round-to-nearest) is expQ8*pulses_left/positions_left */ ex = (2*exp_q8*kn + (n - i))/(2*(n - i)); if (ex > kn*256) ex = kn*256; sum_ex += (2*256*kn + (n - i))/(2*(n - i)); /* No need to encode the magnitude for the last bin. */ if (i != n - 1) od_laplace_encode(enc, x, ex, kn); if (x != 0) od_ec_enc_bits(enc, y[i] < 0, 1); kn -= x; } /* Adapting the estimates for expQ8 */ if (!ran_delta) { curr[OD_ADAPT_COUNT_Q8] = OD_ADAPT_NO_VALUE; curr[OD_ADAPT_COUNT_EX_Q8] = OD_ADAPT_NO_VALUE; } curr[OD_ADAPT_K_Q8] = k - kn; curr[OD_ADAPT_SUM_EX_Q8] = sum_ex; }