/* * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ /* clang-format off */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include "aom_dsp/entdec.h" #include "av1/common/pvq.h" #include "pvq_decoder.h" #if OD_ACCOUNTING # define od_decode_pvq_split(ec, adapt, sum, ctx, str) od_decode_pvq_split_(ec, adapt, sum, ctx, str) #else # define od_decode_pvq_split(ec, adapt, sum, ctx, str) od_decode_pvq_split_(ec, adapt, sum, ctx) #endif static int od_decode_pvq_split_(od_ec_dec *ec, od_pvq_codeword_ctx *adapt, int sum, int ctx OD_ACC_STR) { int shift; int count; int msbs; int fctx; count = 0; if (sum == 0) return 0; shift = OD_MAXI(0, OD_ILOG(sum) - 3); fctx = 7*ctx + (sum >> shift) - 1; msbs = od_decode_cdf_adapt(ec, adapt->pvq_split_cdf[fctx], (sum >> shift) + 1, adapt->pvq_split_increment, acc_str); if (shift) count = od_ec_dec_bits(ec, shift, acc_str); count += msbs << shift; if (count > sum) { count = sum; ec->error = 1; } return count; } void od_decode_band_pvq_splits(od_ec_dec *ec, od_pvq_codeword_ctx *adapt, od_coeff *y, int n, int k, int level) { int mid; int count_right; if (n == 1) { y[0] = k; } else if (k == 0) { OD_CLEAR(y, n); } else if (k == 1 && n <= 16) { int cdf_id; int pos; cdf_id = od_pvq_k1_ctx(n, level == 0); OD_CLEAR(y, n); pos = od_decode_cdf_adapt(ec, adapt->pvq_k1_cdf[cdf_id], n, adapt->pvq_k1_increment, "pvq:k1"); y[pos] = 1; } else { mid = n >> 1; count_right = od_decode_pvq_split(ec, adapt, k, od_pvq_size_ctx(n), "pvq:split"); od_decode_band_pvq_splits(ec, adapt, y, mid, k - count_right, level + 1); od_decode_band_pvq_splits(ec, adapt, y + mid, n - mid, count_right, level + 1); } } /** Decodes the tail of a Laplace-distributed variable, i.e. it doesn't * do anything special for the zero case. * * @param [dec] range decoder * @param [decay] decay factor of the distribution, i.e. pdf ~= decay^x * @param [max] maximum possible value of x (used to truncate the pdf) * * @retval decoded variable x */ int od_laplace_decode_special_(od_ec_dec *dec, unsigned decay, int max OD_ACC_STR) { int pos; int shift; int xs; int ms; int sym; const uint16_t *cdf; shift = 0; if (max == 0) return 0; /* We don't want a large decay value because that would require too many symbols. However, it's OK if the max is below 15. */ while (((max >> shift) >= 15 || max == -1) && decay > 235) { decay = (decay*decay + 128) >> 8; shift++; } decay = OD_MINI(decay, 254); decay = OD_MAXI(decay, 2); ms = max >> shift; cdf = EXP_CDF_TABLE[(decay + 1) >> 1]; OD_LOG((OD_LOG_PVQ, OD_LOG_DEBUG, "decay = %d\n", decay)); xs = 0; do { sym = OD_MINI(xs, 15); { int i; OD_LOG((OD_LOG_PVQ, OD_LOG_DEBUG, "%d %d %d %d", xs, shift, sym, max)); for (i = 0; i < 16; i++) { OD_LOG_PARTIAL((OD_LOG_PVQ, OD_LOG_DEBUG, "%d ", cdf[i])); } OD_LOG_PARTIAL((OD_LOG_PVQ, OD_LOG_DEBUG, "\n")); } if (ms > 0 && ms < 15) { /* Simple way of truncating the pdf when we have a bound. */ sym = od_ec_decode_cdf_unscaled(dec, cdf, ms + 1); } else sym = od_ec_decode_cdf_q15(dec, cdf, 16); xs += sym; ms -= 15; } while (sym >= 15 && ms != 0); if (shift) pos = (xs << shift) + od_ec_dec_bits(dec, shift, acc_str); else pos = xs; OD_ASSERT(pos >> shift <= max >> shift || max == -1); if (max != -1 && pos > max) { pos = max; dec->error = 1; } OD_ASSERT(pos <= max || max == -1); return pos; } /** Decodes a Laplace-distributed variable for use in PVQ. * * @param [in,out] dec range decoder * @param [in] ExQ8 expectation of the absolute value of x * @param [in] K maximum value of |x| * * @retval decoded variable (including sign) */ int od_laplace_decode_(od_ec_dec *dec, unsigned ex_q8, int k OD_ACC_STR) { int j; int shift; uint16_t cdf[16]; int sym; int lsb; int decay; int offset; lsb = 0; /* Shift down x if expectation is too high. */ shift = OD_ILOG(ex_q8) - 11; if (shift < 0) shift = 0; /* Apply the shift with rounding to Ex, K and xs. */ ex_q8 = (ex_q8 + (1 << shift >> 1)) >> shift; k = (k + (1 << shift >> 1)) >> shift; decay = OD_MINI(254, OD_DIVU(256*ex_q8, (ex_q8 + 256))); offset = LAPLACE_OFFSET[(decay + 1) >> 1]; for (j = 0; j < 16; j++) { cdf[j] = EXP_CDF_TABLE[(decay + 1) >> 1][j] - offset; } /* Simple way of truncating the pdf when we have a bound */ if (k == 0) sym = 0; else sym = od_ec_decode_cdf_unscaled(dec, cdf, OD_MINI(k + 1, 16)); if (shift) { int special; /* Because of the rounding, there's only half the number of possibilities for xs=0 */ special = (sym == 0); if (shift - special > 0) lsb = od_ec_dec_bits(dec, shift - special, acc_str); lsb -= (!special << (shift - 1)); } /* Handle the exponentially-decaying tail of the distribution */ if (sym == 15) sym += laplace_decode_special(dec, decay, k - 15, acc_str); return (sym << shift) + lsb; } #if OD_ACCOUNTING # define laplace_decode_vector_delta(dec, y, n, k, curr, means, str) laplace_decode_vector_delta_(dec, y, n, k, curr, means, str) #else # define laplace_decode_vector_delta(dec, y, n, k, curr, means, str) laplace_decode_vector_delta_(dec, y, n, k, curr, means) #endif static void laplace_decode_vector_delta_(od_ec_dec *dec, od_coeff *y, int n, int k, int32_t *curr, const int32_t *means OD_ACC_STR) { int i; int prev; int sum_ex; int sum_c; int coef; int pos; int k0; int sign; int first; int k_left; prev = 0; sum_ex = 0; sum_c = 0; coef = 256*means[OD_ADAPT_COUNT_Q8]/ (1 + means[OD_ADAPT_COUNT_EX_Q8]); pos = 0; sign = 0; first = 1; k_left = k; for (i = 0; i < n; i++) y[i] = 0; k0 = k_left; coef = OD_MAXI(coef, 1); for (i = 0; i < k0; i++) { int count; if (first) { int decay; int ex = coef*(n - prev)/k_left; if (ex > 65280) decay = 255; else { decay = OD_MINI(255, (int)((256*ex/(ex + 256) + (ex>>5)*ex/((n + 1)*(n - 1)*(n - 1))))); } /*Update mean position.*/ count = laplace_decode_special(dec, decay, n - 1, acc_str); first = 0; } else count = laplace_decode(dec, coef*(n - prev)/k_left, n - prev - 1, acc_str); sum_ex += 256*(n - prev); sum_c += count*k_left; pos += count; OD_ASSERT(pos < n); if (y[pos] == 0) sign = od_ec_dec_bits(dec, 1, acc_str); y[pos] += sign ? -1 : 1; prev = pos; k_left--; if (k_left == 0) break; } if (k > 0) { curr[OD_ADAPT_COUNT_Q8] = 256*sum_c; curr[OD_ADAPT_COUNT_EX_Q8] = sum_ex; } else { curr[OD_ADAPT_COUNT_Q8] = -1; curr[OD_ADAPT_COUNT_EX_Q8] = 0; } curr[OD_ADAPT_K_Q8] = 0; curr[OD_ADAPT_SUM_EX_Q8] = 0; } /** Decodes a vector of integers assumed to come from rounding a sequence of * Laplace-distributed real values in decreasing order of variance. * * @param [in,out] dec range decoder * @param [in] y decoded vector * @param [in] N dimension of the vector * @param [in] K sum of the absolute value of components of y * @param [out] curr Adaptation context output, may alias means. * @param [in] means Adaptation context input. */ void od_laplace_decode_vector_(od_ec_dec *dec, od_coeff *y, int n, int k, int32_t *curr, const int32_t *means OD_ACC_STR) { int i; int sum_ex; int kn; int exp_q8; int mean_k_q8; int mean_sum_ex_q8; int ran_delta; ran_delta = 0; if (k <= 1) { laplace_decode_vector_delta(dec, y, n, k, curr, means, acc_str); return; } if (k == 0) { curr[OD_ADAPT_COUNT_Q8] = OD_ADAPT_NO_VALUE; curr[OD_ADAPT_COUNT_EX_Q8] = OD_ADAPT_NO_VALUE; curr[OD_ADAPT_K_Q8] = 0; curr[OD_ADAPT_SUM_EX_Q8] = 0; for (i = 0; i < n; i++) y[i] = 0; return; } sum_ex = 0; kn = k; /* Estimates the factor relating pulses_left and positions_left to E(|x|).*/ mean_k_q8 = means[OD_ADAPT_K_Q8]; mean_sum_ex_q8 = means[OD_ADAPT_SUM_EX_Q8]; if (mean_k_q8 < 1 << 23) exp_q8 = 256*mean_k_q8/(1 + mean_sum_ex_q8); else exp_q8 = mean_k_q8/(1 + (mean_sum_ex_q8 >> 8)); for (i = 0; i < n; i++) { int ex; int x; if (kn == 0) break; if (kn <= 1 && i != n - 1) { laplace_decode_vector_delta(dec, y + i, n - i, kn, curr, means, acc_str); ran_delta = 1; i = n; break; } /* Expected value of x (round-to-nearest) is expQ8*pulses_left/positions_left. */ ex = (2*exp_q8*kn + (n - i))/(2*(n - i)); if (ex > kn*256) ex = kn*256; sum_ex += (2*256*kn + (n - i))/(2*(n - i)); /* No need to encode the magnitude for the last bin. */ if (i != n - 1) x = laplace_decode(dec, ex, kn, acc_str); else x = kn; if (x != 0) { if (od_ec_dec_bits(dec, 1, acc_str)) x = -x; } y[i] = x; kn -= abs(x); } /* Adapting the estimates for expQ8. */ if (!ran_delta) { curr[OD_ADAPT_COUNT_Q8] = OD_ADAPT_NO_VALUE; curr[OD_ADAPT_COUNT_EX_Q8] = OD_ADAPT_NO_VALUE; } curr[OD_ADAPT_K_Q8] = k - kn; curr[OD_ADAPT_SUM_EX_Q8] = sum_ex; for (; i < n; i++) y[i] = 0; }