/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_ports/system_state.h" #if CONFIG_AOM_HIGHBITDEPTH #include "aom_dsp/aom_dsp_common.h" #endif // CONFIG_AOM_HIGHBITDEPTH #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/aom_once.h" #include "av1/common/reconintra.h" #include "av1/common/onyxc_int.h" enum { NEED_LEFT = 1 << 1, NEED_ABOVE = 1 << 2, NEED_ABOVERIGHT = 1 << 3, NEED_ABOVELEFT = 1 << 4, NEED_BOTTOMLEFT = 1 << 5, }; static const uint8_t extend_modes[INTRA_MODES] = { NEED_ABOVE | NEED_LEFT, // DC NEED_ABOVE, // V NEED_LEFT, // H NEED_ABOVE | NEED_ABOVERIGHT, // D45 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D117 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D153 NEED_LEFT | NEED_BOTTOMLEFT, // D207 NEED_ABOVE | NEED_ABOVERIGHT, // D63 NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // TM }; static const uint8_t orders_128x128[1] = { 0 }; static const uint8_t orders_128x64[2] = { 0, 1 }; static const uint8_t orders_64x128[2] = { 0, 1 }; static const uint8_t orders_64x64[4] = { 0, 1, 2, 3, }; static const uint8_t orders_64x32[8] = { 0, 2, 1, 3, 4, 6, 5, 7, }; static const uint8_t orders_32x64[8] = { 0, 1, 2, 3, 4, 5, 6, 7, }; static const uint8_t orders_32x32[16] = { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15, }; static const uint8_t orders_32x16[32] = { 0, 2, 8, 10, 1, 3, 9, 11, 4, 6, 12, 14, 5, 7, 13, 15, 16, 18, 24, 26, 17, 19, 25, 27, 20, 22, 28, 30, 21, 23, 29, 31, }; static const uint8_t orders_16x32[32] = { 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31, }; static const uint8_t orders_16x16[64] = { 0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23, 8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31, 32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55, 40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63, }; #if CONFIG_EXT_PARTITION static const uint8_t orders_16x8[128] = { 0, 2, 8, 10, 32, 34, 40, 42, 1, 3, 9, 11, 33, 35, 41, 43, 4, 6, 12, 14, 36, 38, 44, 46, 5, 7, 13, 15, 37, 39, 45, 47, 16, 18, 24, 26, 48, 50, 56, 58, 17, 19, 25, 27, 49, 51, 57, 59, 20, 22, 28, 30, 52, 54, 60, 62, 21, 23, 29, 31, 53, 55, 61, 63, 64, 66, 72, 74, 96, 98, 104, 106, 65, 67, 73, 75, 97, 99, 105, 107, 68, 70, 76, 78, 100, 102, 108, 110, 69, 71, 77, 79, 101, 103, 109, 111, 80, 82, 88, 90, 112, 114, 120, 122, 81, 83, 89, 91, 113, 115, 121, 123, 84, 86, 92, 94, 116, 118, 124, 126, 85, 87, 93, 95, 117, 119, 125, 127, }; static const uint8_t orders_8x16[128] = { 0, 1, 2, 3, 8, 9, 10, 11, 32, 33, 34, 35, 40, 41, 42, 43, 4, 5, 6, 7, 12, 13, 14, 15, 36, 37, 38, 39, 44, 45, 46, 47, 16, 17, 18, 19, 24, 25, 26, 27, 48, 49, 50, 51, 56, 57, 58, 59, 20, 21, 22, 23, 28, 29, 30, 31, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 96, 97, 98, 99, 104, 105, 106, 107, 68, 69, 70, 71, 76, 77, 78, 79, 100, 101, 102, 103, 108, 109, 110, 111, 80, 81, 82, 83, 88, 89, 90, 91, 112, 113, 114, 115, 120, 121, 122, 123, 84, 85, 86, 87, 92, 93, 94, 95, 116, 117, 118, 119, 124, 125, 126, 127, }; static const uint8_t orders_8x8[256] = { 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 2, 3, 6, 7, 18, 19, 22, 23, 66, 67, 70, 71, 82, 83, 86, 87, 8, 9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88, 89, 92, 93, 10, 11, 14, 15, 26, 27, 30, 31, 74, 75, 78, 79, 90, 91, 94, 95, 32, 33, 36, 37, 48, 49, 52, 53, 96, 97, 100, 101, 112, 113, 116, 117, 34, 35, 38, 39, 50, 51, 54, 55, 98, 99, 102, 103, 114, 115, 118, 119, 40, 41, 44, 45, 56, 57, 60, 61, 104, 105, 108, 109, 120, 121, 124, 125, 42, 43, 46, 47, 58, 59, 62, 63, 106, 107, 110, 111, 122, 123, 126, 127, 128, 129, 132, 133, 144, 145, 148, 149, 192, 193, 196, 197, 208, 209, 212, 213, 130, 131, 134, 135, 146, 147, 150, 151, 194, 195, 198, 199, 210, 211, 214, 215, 136, 137, 140, 141, 152, 153, 156, 157, 200, 201, 204, 205, 216, 217, 220, 221, 138, 139, 142, 143, 154, 155, 158, 159, 202, 203, 206, 207, 218, 219, 222, 223, 160, 161, 164, 165, 176, 177, 180, 181, 224, 225, 228, 229, 240, 241, 244, 245, 162, 163, 166, 167, 178, 179, 182, 183, 226, 227, 230, 231, 242, 243, 246, 247, 168, 169, 172, 173, 184, 185, 188, 189, 232, 233, 236, 237, 248, 249, 252, 253, 170, 171, 174, 175, 186, 187, 190, 191, 234, 235, 238, 239, 250, 251, 254, 255, }; /* clang-format off */ static const uint8_t *const orders[BLOCK_SIZES] = { // 4X4 orders_8x8, // 4X8, 8X4, 8X8 orders_8x8, orders_8x8, orders_8x8, // 8X16, 16X8, 16X16 orders_8x16, orders_16x8, orders_16x16, // 16X32, 32X16, 32X32 orders_16x32, orders_32x16, orders_32x32, // 32X64, 64X32, 64X64 orders_32x64, orders_64x32, orders_64x64, // 64x128, 128x64, 128x128 orders_64x128, orders_128x64, orders_128x128 }; /* clang-format on */ #else /* clang-format off */ static const uint8_t *const orders[BLOCK_SIZES] = { // 4X4 orders_16x16, // 4X8, 8X4, 8X8 orders_16x16, orders_16x16, orders_16x16, // 8X16, 16X8, 16X16 orders_16x32, orders_32x16, orders_32x32, // 16X32, 32X16, 32X32 orders_32x64, orders_64x32, orders_64x64, // 32X64, 64X32, 64X64 orders_64x128, orders_128x64, orders_128x128 }; /* clang-format on */ #endif // CONFIG_EXT_PARTITION #if CONFIG_EXT_PARTITION_TYPES static const uint8_t orders_verta_64x64[4] = { 0, 2, 1, 2, }; static const uint8_t orders_verta_32x32[16] = { 0, 2, 4, 6, 1, 2, 5, 6, 8, 10, 12, 14, 9, 10, 13, 14, }; static const uint8_t orders_verta_16x16[64] = { 0, 2, 4, 6, 16, 18, 20, 22, 1, 2, 5, 6, 17, 18, 21, 22, 8, 10, 12, 14, 24, 26, 28, 30, 9, 10, 13, 14, 25, 26, 29, 30, 32, 34, 36, 38, 48, 50, 52, 54, 33, 34, 37, 38, 49, 50, 53, 54, 40, 42, 44, 46, 56, 58, 60, 62, 41, 42, 45, 46, 57, 58, 61, 62, }; #if CONFIG_EXT_PARTITION static const uint8_t orders_verta_8x8[256] = { 0, 2, 4, 6, 16, 18, 20, 22, 64, 66, 68, 70, 80, 82, 84, 86, 1, 2, 5, 6, 17, 18, 21, 22, 65, 66, 69, 70, 81, 82, 85, 86, 8, 10, 12, 14, 24, 26, 28, 30, 72, 74, 76, 78, 88, 90, 92, 94, 9, 10, 13, 14, 25, 26, 29, 30, 73, 74, 77, 78, 89, 90, 93, 94, 32, 34, 36, 38, 48, 50, 52, 54, 96, 98, 100, 102, 112, 114, 116, 118, 33, 34, 37, 38, 49, 50, 53, 54, 97, 98, 101, 102, 113, 114, 117, 118, 40, 42, 44, 46, 56, 58, 60, 62, 104, 106, 108, 110, 120, 122, 124, 126, 41, 42, 45, 46, 57, 58, 61, 62, 105, 106, 109, 110, 121, 122, 125, 126, 128, 130, 132, 134, 144, 146, 148, 150, 192, 194, 196, 198, 208, 210, 212, 214, 129, 130, 133, 134, 145, 146, 149, 150, 193, 194, 197, 198, 209, 210, 213, 214, 136, 138, 140, 142, 152, 154, 156, 158, 200, 202, 204, 206, 216, 218, 220, 222, 137, 138, 141, 142, 153, 154, 157, 158, 201, 202, 205, 206, 217, 218, 221, 222, 160, 162, 164, 166, 176, 178, 180, 182, 224, 226, 228, 230, 240, 242, 244, 246, 161, 162, 165, 166, 177, 178, 181, 182, 225, 226, 229, 230, 241, 242, 245, 246, 168, 170, 172, 174, 184, 186, 188, 190, 232, 234, 236, 238, 248, 250, 252, 254, 169, 170, 173, 174, 185, 186, 189, 190, 233, 234, 237, 238, 249, 250, 253, 254, }; /* clang-format off */ static const uint8_t *const orders_verta[BLOCK_SIZES] = { // 4X4 orders_verta_8x8, // 4X8, 8X4, 8X8 orders_verta_8x8, orders_verta_8x8, orders_verta_8x8, // 8X16, 16X8, 16X16 orders_8x16, orders_16x8, orders_verta_16x16, // 16X32, 32X16, 32X32 orders_16x32, orders_32x16, orders_verta_32x32, // 32X64, 64X32, 64X64 orders_32x64, orders_64x32, orders_verta_64x64, // 64x128, 128x64, 128x128 orders_64x128, orders_128x64, orders_128x128 }; /* clang-format on */ #else /* clang-format off */ static const uint8_t *const orders_verta[BLOCK_SIZES] = { // 4X4 orders_verta_16x16, // 4X8, 8X4, 8X8 orders_verta_16x16, orders_verta_16x16, orders_verta_16x16, // 8X16, 16X8, 16X16 orders_16x32, orders_32x16, orders_verta_32x32, // 16X32, 32X16, 32X32 orders_32x64, orders_64x32, orders_verta_64x64, // 32X64, 64X32, 64X64 orders_64x128, orders_128x64, orders_128x128 }; /* clang-format on */ #endif // CONFIG_EXT_PARTITION #endif // CONFIG_EXT_PARTITION_TYPES static int av1_has_right(BLOCK_SIZE bsize, int mi_row, int mi_col, int right_available, #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif TX_SIZE txsz, int y, int x, int ss_x) { const int wl = mi_width_log2_lookup[bsize]; const int w = AOMMAX(num_4x4_blocks_wide_lookup[bsize] >> ss_x, 1); const int step = tx_size_wide_unit[txsz]; // TODO(bshacklett, huisu): Currently the RD loop traverses 4X8 blocks in // inverted N order while in the bitstream the subblocks are stored in Z // order. This discrepancy makes this function incorrect when considering 4X8 // blocks in the RD loop, so we disable the extended right edge for these // blocks. The correct solution is to change the bitstream to store these // blocks in inverted N order, and then update this function appropriately. if (bsize == BLOCK_4X8 && y == 1) return 0; if (!right_available) return 0; // Handle block size 4x8 and 4x4 if (ss_x == 0 && num_4x4_blocks_wide_lookup[bsize] < 2 && x == 0) return 1; if (y == 0) { const int hl = mi_height_log2_lookup[bsize]; const uint8_t *order; int my_order, tr_order; #if CONFIG_EXT_PARTITION_TYPES if (partition == PARTITION_VERT_A) order = orders_verta[bsize]; else #endif // CONFIG_EXT_PARTITION_TYPES order = orders[bsize]; if (x + step < w) return 1; mi_row = (mi_row & MAX_MIB_MASK) >> hl; mi_col = (mi_col & MAX_MIB_MASK) >> wl; // If top row of coding unit if (mi_row == 0) return 1; // If rightmost column of coding unit if (((mi_col + 1) << wl) >= MAX_MIB_SIZE) return 0; my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0]; tr_order = order[((mi_row - 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 1]; return my_order > tr_order; } else { return x + step < w; } } static int av1_has_bottom(BLOCK_SIZE bsize, int mi_row, int mi_col, int bottom_available, TX_SIZE txsz, int y, int x, int ss_y) { if (!bottom_available || x != 0) { return 0; } else { const int wl = mi_width_log2_lookup[bsize]; const int hl = mi_height_log2_lookup[bsize]; const int h = 1 << (hl + 1 - ss_y); const int step = tx_size_wide_unit[txsz]; const uint8_t *order = orders[bsize]; int my_order, bl_order; // Handle block size 8x4 and 4x4 if (ss_y == 0 && num_4x4_blocks_high_lookup[bsize] < 2 && y == 0) return 1; if (y + step < h) return 1; mi_row = (mi_row & MAX_MIB_MASK) >> hl; mi_col = (mi_col & MAX_MIB_MASK) >> wl; if (mi_col == 0) return (mi_row << (hl + !ss_y)) + y + step < (MAX_MIB_SIZE << !ss_y); if (((mi_row + 1) << hl) >= MAX_MIB_SIZE) return 0; my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0]; bl_order = order[((mi_row + 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col - 1]; return bl_order < my_order; } } typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left); static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; static intra_pred_fn dc_pred[2][2][TX_SIZES]; #if CONFIG_AOM_HIGHBITDEPTH typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd); static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES]; static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES]; #endif // CONFIG_AOM_HIGHBITDEPTH static void av1_init_intra_predictors_internal(void) { #define INIT_NO_4X4(p, type) \ p[TX_8X8] = aom_##type##_predictor_8x8; \ p[TX_16X16] = aom_##type##_predictor_16x16; \ p[TX_32X32] = aom_##type##_predictor_32x32 #define INIT_ALL_SIZES(p, type) \ p[TX_4X4] = aom_##type##_predictor_4x4; \ INIT_NO_4X4(p, type) INIT_ALL_SIZES(pred[V_PRED], v); INIT_ALL_SIZES(pred[H_PRED], h); INIT_ALL_SIZES(pred[D207_PRED], d207e); INIT_ALL_SIZES(pred[D45_PRED], d45e); INIT_ALL_SIZES(pred[D63_PRED], d63e); INIT_ALL_SIZES(pred[D117_PRED], d117); INIT_ALL_SIZES(pred[D135_PRED], d135); INIT_ALL_SIZES(pred[D153_PRED], d153); #if CONFIG_ALT_INTRA INIT_ALL_SIZES(pred[TM_PRED], paeth); #else INIT_ALL_SIZES(pred[TM_PRED], tm); #endif // CONFIG_ALT_INTRA INIT_ALL_SIZES(dc_pred[0][0], dc_128); INIT_ALL_SIZES(dc_pred[0][1], dc_top); INIT_ALL_SIZES(dc_pred[1][0], dc_left); INIT_ALL_SIZES(dc_pred[1][1], dc); #if CONFIG_AOM_HIGHBITDEPTH INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207e); INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45e); INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63e); INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); #if CONFIG_ALT_INTRA INIT_ALL_SIZES(pred_high[TM_PRED], highbd_paeth); #else INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); #endif // CONFIG_ALT_INTRA INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); #endif // CONFIG_AOM_HIGHBITDEPTH #undef intra_pred_allsizes } #if CONFIG_EXT_INTRA static int intra_subpel_interp(int base, int shift, const uint8_t *ref, int ref_start_idx, int ref_end_idx, INTRA_FILTER filter_type) { int val, k, idx, filter_idx = 0; const int16_t *filter = NULL; if (filter_type == INTRA_FILTER_LINEAR) { val = ref[base] * (256 - shift) + ref[base + 1] * shift; val = ROUND_POWER_OF_TWO(val, 8); } else { filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); filter = av1_intra_filter_kernels[filter_type][filter_idx]; if (filter_idx < (1 << SUBPEL_BITS)) { val = 0; for (k = 0; k < SUBPEL_TAPS; ++k) { idx = base + 1 - (SUBPEL_TAPS / 2) + k; idx = AOMMAX(AOMMIN(idx, ref_end_idx), ref_start_idx); val += ref[idx] * filter[k]; } val = ROUND_POWER_OF_TWO(val, FILTER_BITS); } else { val = ref[base + 1]; } } return val; } // Directional prediction, zone 1: 0 < angle < 90 static void dr_prediction_z1(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left, int dx, int dy, INTRA_FILTER filter_type) { int r, c, x, base, shift, val; (void)left; (void)dy; assert(dy == 1); assert(dx < 0); if (filter_type != INTRA_FILTER_LINEAR) { const int pad_size = SUBPEL_TAPS >> 1; int len; DECLARE_ALIGNED(16, uint8_t, buf[SUBPEL_SHIFTS][MAX_SB_SIZE]); DECLARE_ALIGNED(16, uint8_t, src[MAX_SB_SIZE + SUBPEL_TAPS]); uint8_t flags[SUBPEL_SHIFTS]; memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0])); memset(src, above[0], pad_size * sizeof(above[0])); memcpy(src + pad_size, above, 2 * bs * sizeof(above[0])); memset(src + pad_size + 2 * bs, above[2 * bs - 1], pad_size * sizeof(above[0])); flags[0] = 1; x = -dx; for (r = 0; r < bs; ++r, dst += stride, x -= dx) { base = x >> 8; shift = x & 0xFF; shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); if (shift == SUBPEL_SHIFTS) { base += 1; shift = 0; } len = AOMMIN(bs, 2 * bs - 1 - base); if (len <= 0) { int i; for (i = r; i < bs; ++i) { memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); dst += stride; } return; } if (len <= (bs >> 1) && !flags[shift]) { base = x >> 8; shift = x & 0xFF; for (c = 0; c < len; ++c) { val = intra_subpel_interp(base, shift, above, 0, 2 * bs - 1, filter_type); dst[c] = clip_pixel(val); ++base; } } else { if (!flags[shift]) { const int16_t *filter = av1_intra_filter_kernels[filter_type][shift]; aom_convolve8_horiz(src + pad_size, 2 * bs, buf[shift], 2 * bs, filter, 16, NULL, 16, 2 * bs, 2 * bs < 16 ? 2 : 1); flags[shift] = 1; } memcpy(dst, shift == 0 ? src + pad_size + base : &buf[shift][base], len * sizeof(dst[0])); } if (len < bs) memset(dst + len, above[2 * bs - 1], (bs - len) * sizeof(dst[0])); } return; } // For linear filter, C code is faster. x = -dx; for (r = 0; r < bs; ++r, dst += stride, x -= dx) { base = x >> 8; shift = x & 0xFF; if (base >= 2 * bs - 1) { int i; for (i = r; i < bs; ++i) { memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); dst += stride; } return; } for (c = 0; c < bs; ++c, ++base) { if (base < 2 * bs - 1) { val = above[base] * (256 - shift) + above[base + 1] * shift; val = ROUND_POWER_OF_TWO(val, 8); dst[c] = clip_pixel(val); } else { dst[c] = above[2 * bs - 1]; } } } } // Directional prediction, zone 2: 90 < angle < 180 static void dr_prediction_z2(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left, int dx, int dy, INTRA_FILTER filter_type) { int r, c, x, y, shift1, shift2, val, base1, base2; assert(dx > 0); assert(dy > 0); x = -dx; for (r = 0; r < bs; ++r, x -= dx, dst += stride) { base1 = x >> 8; y = (r << 8) - dy; for (c = 0; c < bs; ++c, ++base1, y -= dy) { if (base1 >= -1) { shift1 = x & 0xFF; val = intra_subpel_interp(base1, shift1, above, -1, bs - 1, filter_type); } else { base2 = y >> 8; if (base2 >= 0) { shift2 = y & 0xFF; val = intra_subpel_interp(base2, shift2, left, 0, bs - 1, filter_type); } else { val = left[0]; } } dst[c] = clip_pixel(val); } } } // Directional prediction, zone 3: 180 < angle < 270 static void dr_prediction_z3(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left, int dx, int dy, INTRA_FILTER filter_type) { int r, c, y, base, shift, val; (void)above; (void)dx; assert(dx == 1); assert(dy < 0); if (filter_type != INTRA_FILTER_LINEAR) { const int pad_size = SUBPEL_TAPS >> 1; int len, i; DECLARE_ALIGNED(16, uint8_t, buf[MAX_SB_SIZE][4 * SUBPEL_SHIFTS]); DECLARE_ALIGNED(16, uint8_t, src[(MAX_SB_SIZE + SUBPEL_TAPS) * 4]); uint8_t flags[SUBPEL_SHIFTS]; memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0])); for (i = 0; i < pad_size; ++i) src[4 * i] = left[0]; for (i = 0; i < 2 * bs; ++i) src[4 * (i + pad_size)] = left[i]; for (i = 0; i < pad_size; ++i) src[4 * (i + 2 * bs + pad_size)] = left[2 * bs - 1]; flags[0] = 1; y = -dy; for (c = 0; c < bs; ++c, y -= dy) { base = y >> 8; shift = y & 0xFF; shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); if (shift == SUBPEL_SHIFTS) { base += 1; shift = 0; } len = AOMMIN(bs, 2 * bs - 1 - base); if (len <= 0) { for (r = 0; r < bs; ++r) { dst[r * stride + c] = left[2 * bs - 1]; } continue; } if (len <= (bs >> 1) && !flags[shift]) { base = y >> 8; shift = y & 0xFF; for (r = 0; r < len; ++r) { val = intra_subpel_interp(base, shift, left, 0, 2 * bs - 1, filter_type); dst[r * stride + c] = clip_pixel(val); ++base; } } else { if (!flags[shift]) { const int16_t *filter = av1_intra_filter_kernels[filter_type][shift]; aom_convolve8_vert(src + 4 * pad_size, 4, buf[0] + 4 * shift, 4 * SUBPEL_SHIFTS, NULL, 16, filter, 16, 2 * bs < 16 ? 4 : 4, 2 * bs); flags[shift] = 1; } if (shift == 0) { for (r = 0; r < len; ++r) { dst[r * stride + c] = left[r + base]; } } else { for (r = 0; r < len; ++r) { dst[r * stride + c] = buf[r + base][4 * shift]; } } } if (len < bs) { for (r = len; r < bs; ++r) { dst[r * stride + c] = left[2 * bs - 1]; } } } return; } // For linear filter, C code is faster. y = -dy; for (c = 0; c < bs; ++c, y -= dy) { base = y >> 8; shift = y & 0xFF; for (r = 0; r < bs; ++r, ++base) { if (base < 2 * bs - 1) { val = left[base] * (256 - shift) + left[base + 1] * shift; val = ROUND_POWER_OF_TWO(val, 8); dst[r * stride + c] = clip_pixel(val); } else { for (; r < bs; ++r) dst[r * stride + c] = left[2 * bs - 1]; break; } } } } // Get the shift (up-scaled by 256) in X w.r.t a unit change in Y. // If angle > 0 && angle < 90, dx = -((int)(256 / t)); // If angle > 90 && angle < 180, dx = (int)(256 / t); // If angle > 180 && angle < 270, dx = 1; static INLINE int get_dx(int angle) { if (angle > 0 && angle < 90) { return -dr_intra_derivative[angle]; } else if (angle > 90 && angle < 180) { return dr_intra_derivative[180 - angle]; } else { // In this case, we are not really going to use dx. We may return any value. return 1; } } // Get the shift (up-scaled by 256) in Y w.r.t a unit change in X. // If angle > 0 && angle < 90, dy = 1; // If angle > 90 && angle < 180, dy = (int)(256 * t); // If angle > 180 && angle < 270, dy = -((int)(256 * t)); static INLINE int get_dy(int angle) { if (angle > 90 && angle < 180) { return dr_intra_derivative[angle - 90]; } else if (angle > 180 && angle < 270) { return -dr_intra_derivative[270 - angle]; } else { // In this case, we are not really going to use dy. We may return any value. return 1; } } static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, const uint8_t *above, const uint8_t *left, int angle, INTRA_FILTER filter_type) { const int dx = get_dx(angle); const int dy = get_dy(angle); const int bs = tx_size_wide[tx_size]; assert(angle > 0 && angle < 270); if (angle > 0 && angle < 90) { dr_prediction_z1(dst, stride, bs, above, left, dx, dy, filter_type); } else if (angle > 90 && angle < 180) { dr_prediction_z2(dst, stride, bs, above, left, dx, dy, filter_type); } else if (angle > 180 && angle < 270) { dr_prediction_z3(dst, stride, bs, above, left, dx, dy, filter_type); } else if (angle == 90) { pred[V_PRED][tx_size](dst, stride, above, left); } else if (angle == 180) { pred[H_PRED][tx_size](dst, stride, above, left); } } #if CONFIG_AOM_HIGHBITDEPTH static int highbd_intra_subpel_interp(int base, int shift, const uint16_t *ref, int ref_start_idx, int ref_end_idx, INTRA_FILTER filter_type) { int val, k, idx, filter_idx = 0; const int16_t *filter = NULL; if (filter_type == INTRA_FILTER_LINEAR) { val = ref[base] * (256 - shift) + ref[base + 1] * shift; val = ROUND_POWER_OF_TWO(val, 8); } else { filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); filter = av1_intra_filter_kernels[filter_type][filter_idx]; if (filter_idx < (1 << SUBPEL_BITS)) { val = 0; for (k = 0; k < SUBPEL_TAPS; ++k) { idx = base + 1 - (SUBPEL_TAPS / 2) + k; idx = AOMMAX(AOMMIN(idx, ref_end_idx), ref_start_idx); val += ref[idx] * filter[k]; } val = ROUND_POWER_OF_TWO(val, FILTER_BITS); } else { val = ref[base + 1]; } } return val; } // Directional prediction, zone 1: 0 < angle < 90 static void highbd_dr_prediction_z1(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int dx, int dy, int bd, INTRA_FILTER filter_type) { int r, c, x, y, base, shift, val; (void)left; (void)dy; assert(dy == 1); assert(dx < 0); for (r = 0; r < bs; ++r) { y = r + 1; for (c = 0; c < bs; ++c) { x = (c << 8) - y * dx; base = x >> 8; shift = x & 0xFF; if (base < 2 * bs - 1) { val = highbd_intra_subpel_interp(base, shift, above, 0, 2 * bs - 1, filter_type); dst[c] = clip_pixel_highbd(val, bd); } else { dst[c] = above[2 * bs - 1]; } } dst += stride; } } // Directional prediction, zone 2: 90 < angle < 180 static void highbd_dr_prediction_z2(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int dx, int dy, int bd, INTRA_FILTER filter_type) { int r, c, x, y, shift, val, base; assert(dx > 0); assert(dy > 0); for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { y = r + 1; x = (c << 8) - y * dx; base = x >> 8; if (base >= -1) { shift = x & 0xFF; val = highbd_intra_subpel_interp(base, shift, above, -1, bs - 1, filter_type); } else { x = c + 1; y = (r << 8) - x * dy; base = y >> 8; if (base >= 0) { shift = y & 0xFF; val = highbd_intra_subpel_interp(base, shift, left, 0, bs - 1, filter_type); } else { val = left[0]; } } dst[c] = clip_pixel_highbd(val, bd); } dst += stride; } } // Directional prediction, zone 3: 180 < angle < 270 static void highbd_dr_prediction_z3(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int dx, int dy, int bd, INTRA_FILTER filter_type) { int r, c, x, y, base, shift, val; (void)above; (void)dx; assert(dx == 1); assert(dy < 0); for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { x = c + 1; y = (r << 8) - x * dy; base = y >> 8; shift = y & 0xFF; if (base < 2 * bs - 1) { val = highbd_intra_subpel_interp(base, shift, left, 0, 2 * bs - 1, filter_type); dst[c] = clip_pixel_highbd(val, bd); } else { dst[c] = left[2 * bs - 1]; } } dst += stride; } } static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r; (void)left; (void)bd; for (r = 0; r < bs; r++) { memcpy(dst, above, bs * sizeof(uint16_t)); dst += stride; } } static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r; (void)above; (void)bd; for (r = 0; r < bs; r++) { aom_memset16(dst, left[r], bs); dst += stride; } } static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int angle, int bd, INTRA_FILTER filter) { const int dx = get_dx(angle); const int dy = get_dy(angle); assert(angle > 0 && angle < 270); if (angle > 0 && angle < 90) { highbd_dr_prediction_z1(dst, stride, bs, above, left, dx, dy, bd, filter); } else if (angle > 90 && angle < 180) { highbd_dr_prediction_z2(dst, stride, bs, above, left, dx, dy, bd, filter); } else if (angle > 180 && angle < 270) { highbd_dr_prediction_z3(dst, stride, bs, above, left, dx, dy, bd, filter); } else if (angle == 90) { highbd_v_predictor(dst, stride, bs, above, left, bd); } else if (angle == 180) { highbd_h_predictor(dst, stride, bs, above, left, bd); } } #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA int av1_filter_intra_taps_4[TX_SIZES][INTRA_MODES][4] = { { { 735, 881, -537, -54 }, { 1005, 519, -488, -11 }, { 383, 990, -343, -6 }, { 442, 805, -542, 319 }, { 658, 616, -133, -116 }, { 875, 442, -141, -151 }, { 386, 741, -23, -80 }, { 390, 1027, -446, 51 }, { 679, 606, -523, 262 }, { 903, 922, -778, -23 }, }, { { 648, 803, -444, 16 }, { 972, 620, -576, 7 }, { 561, 967, -499, -5 }, { 585, 762, -468, 144 }, { 596, 619, -182, -9 }, { 895, 459, -176, -153 }, { 557, 722, -126, -129 }, { 601, 839, -523, 105 }, { 562, 709, -499, 251 }, { 803, 872, -695, 43 }, }, { { 423, 728, -347, 111 }, { 963, 685, -665, 23 }, { 281, 1024, -480, 216 }, { 640, 596, -437, 78 }, { 429, 669, -259, 99 }, { 740, 646, -415, 23 }, { 568, 771, -346, 40 }, { 404, 833, -486, 209 }, { 398, 712, -423, 307 }, { 939, 935, -887, 17 }, }, { { 477, 737, -393, 150 }, { 881, 630, -546, 67 }, { 506, 984, -443, -20 }, { 114, 459, -270, 528 }, { 433, 528, 14, 3 }, { 837, 470, -301, -30 }, { 181, 777, 89, -107 }, { -29, 716, -232, 259 }, { 589, 646, -495, 255 }, { 740, 884, -728, 77 }, }, }; static void filter_intra_predictors_4tap(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left, int mode) { int k, r, c; int buffer[33][65]; int mean, ipred; const TX_SIZE tx_size = (bs == 32) ? TX_32X32 : ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4))); const int c0 = av1_filter_intra_taps_4[tx_size][mode][0]; const int c1 = av1_filter_intra_taps_4[tx_size][mode][1]; const int c2 = av1_filter_intra_taps_4[tx_size][mode][2]; const int c3 = av1_filter_intra_taps_4[tx_size][mode][3]; k = 0; mean = 0; while (k < bs) { mean = mean + (int)left[k]; mean = mean + (int)above[k]; k++; } mean = (mean + bs) / (2 * bs); for (r = 0; r < bs; ++r) buffer[r + 1][0] = (int)left[r] - mean; for (c = 0; c < 2 * bs + 1; ++c) buffer[0][c] = (int)above[c - 1] - mean; for (r = 1; r < bs + 1; ++r) for (c = 1; c < 2 * bs + 1 - r; ++c) { ipred = c0 * buffer[r - 1][c] + c1 * buffer[r][c - 1] + c2 * buffer[r - 1][c - 1] + c3 * buffer[r - 1][c + 1]; buffer[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS); } for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { ipred = buffer[r + 1][c + 1] + mean; dst[c] = clip_pixel(ipred); } dst += stride; } } void av1_dc_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED); } void av1_v_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED); } void av1_h_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED); } void av1_d45_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED); } void av1_d135_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED); } void av1_d117_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED); } void av1_d153_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED); } void av1_d207_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED); } void av1_d63_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED); } void av1_tm_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED); } static void filter_intra_predictors(int mode, uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { switch (mode) { case DC_PRED: av1_dc_filter_predictor(dst, stride, bs, above, left); break; case V_PRED: av1_v_filter_predictor(dst, stride, bs, above, left); break; case H_PRED: av1_h_filter_predictor(dst, stride, bs, above, left); break; case D45_PRED: av1_d45_filter_predictor(dst, stride, bs, above, left); break; case D135_PRED: av1_d135_filter_predictor(dst, stride, bs, above, left); break; case D117_PRED: av1_d117_filter_predictor(dst, stride, bs, above, left); break; case D153_PRED: av1_d153_filter_predictor(dst, stride, bs, above, left); break; case D207_PRED: av1_d207_filter_predictor(dst, stride, bs, above, left); break; case D63_PRED: av1_d63_filter_predictor(dst, stride, bs, above, left); break; case TM_PRED: av1_tm_filter_predictor(dst, stride, bs, above, left); break; default: assert(0); } } #if CONFIG_AOM_HIGHBITDEPTH static void highbd_filter_intra_predictors_4tap(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int mode, int bd) { int k, r, c; int preds[33][65]; int mean, ipred; const TX_SIZE tx_size = (bs == 32) ? TX_32X32 : ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4))); const int c0 = av1_filter_intra_taps_4[tx_size][mode][0]; const int c1 = av1_filter_intra_taps_4[tx_size][mode][1]; const int c2 = av1_filter_intra_taps_4[tx_size][mode][2]; const int c3 = av1_filter_intra_taps_4[tx_size][mode][3]; k = 0; mean = 0; while (k < bs) { mean = mean + (int)left[k]; mean = mean + (int)above[k]; k++; } mean = (mean + bs) / (2 * bs); for (r = 0; r < bs; ++r) preds[r + 1][0] = (int)left[r] - mean; for (c = 0; c < 2 * bs + 1; ++c) preds[0][c] = (int)above[c - 1] - mean; for (r = 1; r < bs + 1; ++r) for (c = 1; c < 2 * bs + 1 - r; ++c) { ipred = c0 * preds[r - 1][c] + c1 * preds[r][c - 1] + c2 * preds[r - 1][c - 1] + c3 * preds[r - 1][c + 1]; preds[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS); } for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { ipred = preds[r + 1][c + 1] + mean; dst[c] = clip_pixel_highbd(ipred, bd); } dst += stride; } } void av1_highbd_dc_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED, bd); } void av1_highbd_v_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED, bd); } void av1_highbd_h_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED, bd); } void av1_highbd_d45_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED, bd); } void av1_highbd_d135_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED, bd); } void av1_highbd_d117_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED, bd); } void av1_highbd_d153_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED, bd); } void av1_highbd_d207_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED, bd); } void av1_highbd_d63_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED, bd); } void av1_highbd_tm_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED, bd); } static void highbd_filter_intra_predictors(int mode, uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { switch (mode) { case DC_PRED: av1_highbd_dc_filter_predictor(dst, stride, bs, above, left, bd); break; case V_PRED: av1_highbd_v_filter_predictor(dst, stride, bs, above, left, bd); break; case H_PRED: av1_highbd_h_filter_predictor(dst, stride, bs, above, left, bd); break; case D45_PRED: av1_highbd_d45_filter_predictor(dst, stride, bs, above, left, bd); break; case D135_PRED: av1_highbd_d135_filter_predictor(dst, stride, bs, above, left, bd); break; case D117_PRED: av1_highbd_d117_filter_predictor(dst, stride, bs, above, left, bd); break; case D153_PRED: av1_highbd_d153_filter_predictor(dst, stride, bs, above, left, bd); break; case D207_PRED: av1_highbd_d207_filter_predictor(dst, stride, bs, above, left, bd); break; case D63_PRED: av1_highbd_d63_filter_predictor(dst, stride, bs, above, left, bd); break; case TM_PRED: av1_highbd_tm_filter_predictor(dst, stride, bs, above, left, bd); break; default: assert(0); } } #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_FILTER_INTRA #if CONFIG_AOM_HIGHBITDEPTH static void build_intra_predictors_high( const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_topright_px, int n_left_px, int n_bottomleft_px, int plane) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED(16, uint16_t, left_col[MAX_SB_SIZE]); DECLARE_ALIGNED(16, uint16_t, above_data[MAX_SB_SIZE + 16]); uint16_t *above_row = above_data + 16; const uint16_t *const_above_row = above_row; const int bs = tx_size_wide[tx_size]; int need_left = extend_modes[mode] & NEED_LEFT; int need_above = extend_modes[mode] & NEED_ABOVE; int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; const uint16_t *above_ref = ref - ref_stride; #if CONFIG_EXT_INTRA int p_angle = 0; const int is_dr_mode = mode != DC_PRED && mode != TM_PRED && xd->mi[0]->mbmi.sb_type >= BLOCK_8X8; #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA const FILTER_INTRA_MODE_INFO *filter_intra_mode_info = &xd->mi[0]->mbmi.filter_intra_mode_info; const FILTER_INTRA_MODE filter_intra_mode = filter_intra_mode_info->filter_intra_mode[plane != 0]; #endif // CONFIG_FILTER_INTRA int base = 128 << (xd->bd - 8); // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T #if CONFIG_EXT_INTRA if (is_dr_mode) { p_angle = mode_to_angle_map[mode] + xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP; if (p_angle <= 90) need_above = 1, need_left = 0, need_above_left = 1; else if (p_angle < 180) need_above = 1, need_left = 1, need_above_left = 1; else need_above = 0, need_left = 1, need_above_left = 1; } #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_left = need_above = need_above_left = 1; #endif // CONFIG_FILTER_INTRA (void)plane; assert(n_top_px >= 0); assert(n_topright_px >= 0); assert(n_left_px >= 0); assert(n_bottomleft_px >= 0); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { const int val = (n_left_px == 0) ? base + 1 : base - 1; for (i = 0; i < bs; ++i) { aom_memset16(dst, val, bs); dst += dst_stride; } return; } // NEED_LEFT if (need_left) { #if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_bottom = 0; #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (is_dr_mode) need_bottom = p_angle > 180; #endif // CONFIG_EXT_INTRA #else const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); #endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA i = 0; if (n_left_px > 0) { for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; if (need_bottom && n_bottomleft_px > 0) { assert(i == bs); for (; i < bs + n_bottomleft_px; i++) left_col[i] = ref[i * ref_stride - 1]; } if (i < (bs << need_bottom)) aom_memset16(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); } else { aom_memset16(left_col, base + 1, bs << need_bottom); } } // NEED_ABOVE if (need_above) { #if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_right = 1; #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (is_dr_mode) need_right = p_angle < 90; #endif // CONFIG_EXT_INTRA #else const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); #endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); i = n_top_px; if (need_right && n_topright_px > 0) { assert(n_top_px == bs); memcpy(above_row + bs, above_ref + bs, n_topright_px * sizeof(above_ref[0])); i += n_topright_px; } if (i < (bs << need_right)) aom_memset16(&above_row[i], above_row[i - 1], (bs << need_right) - i); } else { aom_memset16(above_row, base - 1, bs << need_right); } } if (need_above_left) { above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1; } #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) { highbd_filter_intra_predictors(filter_intra_mode, dst, dst_stride, bs, const_above_row, left_col, xd->bd); return; } #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (is_dr_mode) { INTRA_FILTER filter = INTRA_FILTER_LINEAR; if (plane == 0 && av1_is_intra_filter_switchable(p_angle)) filter = xd->mi[0]->mbmi.intra_filter; highbd_dr_predictor(dst, dst_stride, bs, const_above_row, left_col, p_angle, xd->bd, filter); return; } #endif // CONFIG_EXT_INTRA // predict if (mode == DC_PRED) { dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( dst, dst_stride, const_above_row, left_col, xd->bd); } else { pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, xd->bd); } } #endif // CONFIG_AOM_HIGHBITDEPTH static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_topright_px, int n_left_px, int n_bottomleft_px, int plane) { int i; DECLARE_ALIGNED(16, uint8_t, left_col[MAX_SB_SIZE]); const uint8_t *above_ref = ref - ref_stride; DECLARE_ALIGNED(16, uint8_t, above_data[MAX_SB_SIZE + 16]); uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = tx_size_wide[tx_size]; int need_left = extend_modes[mode] & NEED_LEFT; int need_above = extend_modes[mode] & NEED_ABOVE; int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; #if CONFIG_EXT_INTRA int p_angle = 0; const int is_dr_mode = mode != DC_PRED && mode != TM_PRED && xd->mi[0]->mbmi.sb_type >= BLOCK_8X8; #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA const FILTER_INTRA_MODE_INFO *filter_intra_mode_info = &xd->mi[0]->mbmi.filter_intra_mode_info; const FILTER_INTRA_MODE filter_intra_mode = filter_intra_mode_info->filter_intra_mode[plane != 0]; #endif // CONFIG_FILTER_INTRA // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. #if CONFIG_EXT_INTRA if (is_dr_mode) { p_angle = mode_to_angle_map[mode] + xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP; if (p_angle <= 90) need_above = 1, need_left = 0, need_above_left = 1; else if (p_angle < 180) need_above = 1, need_left = 1, need_above_left = 1; else need_above = 0, need_left = 1, need_above_left = 1; } #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_left = need_above = need_above_left = 1; #endif // CONFIG_FILTER_INTRA (void)xd; (void)plane; assert(n_top_px >= 0); assert(n_topright_px >= 0); assert(n_left_px >= 0); assert(n_bottomleft_px >= 0); if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { const int val = (n_left_px == 0) ? 129 : 127; for (i = 0; i < bs; ++i) { memset(dst, val, bs); dst += dst_stride; } return; } // NEED_LEFT if (need_left) { #if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_bottom = 0; #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (is_dr_mode) need_bottom = p_angle > 180; #endif // CONFIG_EXT_INTRA #else const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); #endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA i = 0; if (n_left_px > 0) { for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; if (need_bottom && n_bottomleft_px > 0) { assert(i == bs); for (; i < bs + n_bottomleft_px; i++) left_col[i] = ref[i * ref_stride - 1]; } if (i < (bs << need_bottom)) memset(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); } else { memset(left_col, 129, bs << need_bottom); } } // NEED_ABOVE if (need_above) { #if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) need_right = 1; #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (is_dr_mode) need_right = p_angle < 90; #endif // CONFIG_EXT_INTRA #else const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); #endif // CONFIG_EXT_INTRA || CONFIG_FITLER_INTRA if (n_top_px > 0) { memcpy(above_row, above_ref, n_top_px); i = n_top_px; if (need_right && n_topright_px > 0) { assert(n_top_px == bs); memcpy(above_row + bs, above_ref + bs, n_topright_px); i += n_topright_px; } if (i < (bs << need_right)) memset(&above_row[i], above_row[i - 1], (bs << need_right) - i); } else { memset(above_row, 127, bs << need_right); } } if (need_above_left) { above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127; } #if CONFIG_FILTER_INTRA if (filter_intra_mode_info->use_filter_intra_mode[plane != 0]) { filter_intra_predictors(filter_intra_mode, dst, dst_stride, bs, const_above_row, left_col); return; } #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA if (mode != DC_PRED && mode != TM_PRED && xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { INTRA_FILTER filter = INTRA_FILTER_LINEAR; if (plane == 0 && av1_is_intra_filter_switchable(p_angle)) filter = xd->mi[0]->mbmi.intra_filter; dr_predictor(dst, dst_stride, tx_size, const_above_row, left_col, p_angle, filter); return; } #endif // CONFIG_EXT_INTRA // predict if (mode == DC_PRED) { dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, const_above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); } } void av1_predict_intra_block(const MACROBLOCKD *xd, int wpx, int hpx, TX_SIZE tx_size, PREDICTION_MODE mode, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, int col_off, int row_off, int plane) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int txw = tx_size_wide_unit[tx_size]; const int txh = tx_size_high_unit[tx_size]; const int have_top = row_off || xd->up_available; const int have_left = col_off || xd->left_available; const int x = col_off * 4; const int y = row_off * 4; const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); const int txwpx = 4 * txw; const int txhpx = 4 * txh; // Distance between the right edge of this prediction block to // the frame right edge const int xr = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + (wpx - x - txwpx); // Distance between the bottom edge of this prediction block to // the frame bottom edge const int yd = (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + (hpx - y - txhpx); const int right_available = (mi_col + ((col_off + txw) >> (1 - pd->subsampling_x))) < xd->tile.mi_col_end; #if CONFIG_EXT_PARTITION_TYPES const PARTITION_TYPE partition = xd->mi[0]->mbmi.partition; #endif const int have_right = av1_has_right(bsize, mi_row, mi_col, right_available, #if CONFIG_EXT_PARTITION_TYPES partition, #endif tx_size, row_off, col_off, pd->subsampling_x); const int have_bottom = av1_has_bottom(bsize, mi_row, mi_col, yd > 0, tx_size, row_off, col_off, pd->subsampling_y); #if CONFIG_PALETTE if (xd->mi[0]->mbmi.palette_mode_info.palette_size[plane != 0] > 0) { const int bs = tx_size_wide[tx_size]; const int stride = wpx; int r, c; uint8_t *map = NULL; #if CONFIG_AOM_HIGHBITDEPTH uint16_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; #else uint8_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; #endif // CONFIG_AOM_HIGHBITDEPTH map = xd->plane[plane != 0].color_index_map; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); for (r = 0; r < bs; ++r) for (c = 0; c < bs; ++c) dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; } else { for (r = 0; r < bs; ++r) for (c = 0; c < bs; ++c) dst[r * dst_stride + c] = (uint8_t)(palette[map[(r + y) * stride + c + x]]); } #else for (r = 0; r < bs; ++r) for (c = 0; c < bs; ++c) dst[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; #endif // CONFIG_AOM_HIGHBITDEPTH return; } #endif // CONFIG_PALETTE #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_intra_predictors_high( xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top ? AOMMIN(txwpx, xr + txwpx) : 0, have_top && have_right ? AOMMIN(txwpx, xr) : 0, have_left ? AOMMIN(txhpx, yd + txhpx) : 0, have_bottom && have_left ? AOMMIN(txhpx, yd) : 0, plane); return; } #endif build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top ? AOMMIN(txwpx, xr + txwpx) : 0, have_top && have_right ? AOMMIN(txwpx, xr) : 0, have_left ? AOMMIN(txhpx, yd + txhpx) : 0, have_bottom && have_left ? AOMMIN(txhpx, yd) : 0, plane); } void av1_init_intra_predictors(void) { once(av1_init_intra_predictors_internal); }