/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./av1_rtcd.h" #include "av1/common/enums.h" #include "av1/common/av1_txfm.h" #include "av1/common/av1_inv_txfm1d.h" #include "av1/common/av1_inv_txfm2d_cfg.h" static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { switch (txfm_type) { case TXFM_TYPE_DCT4: return av1_idct4_new; case TXFM_TYPE_DCT8: return av1_idct8_new; case TXFM_TYPE_DCT16: return av1_idct16_new; case TXFM_TYPE_DCT32: return av1_idct32_new; case TXFM_TYPE_ADST4: return av1_iadst4_new; case TXFM_TYPE_ADST8: return av1_iadst8_new; case TXFM_TYPE_ADST16: return av1_iadst16_new; case TXFM_TYPE_ADST32: return av1_iadst32_new; default: assert(0); return NULL; } } #if CONFIG_EXT_TX static const TXFM_2D_CFG *inv_txfm_cfg_ls[FLIPADST_ADST + 1][TX_SIZES] = { { &inv_txfm_2d_cfg_dct_dct_4, &inv_txfm_2d_cfg_dct_dct_8, &inv_txfm_2d_cfg_dct_dct_16, &inv_txfm_2d_cfg_dct_dct_32 }, { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, }; #else static const TXFM_2D_CFG *inv_txfm_cfg_ls[TX_TYPES][TX_SIZES] = { { &inv_txfm_2d_cfg_dct_dct_4, &inv_txfm_2d_cfg_dct_dct_8, &inv_txfm_2d_cfg_dct_dct_16, &inv_txfm_2d_cfg_dct_dct_32 }, { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, }; #endif TXFM_2D_FLIP_CFG av1_get_inv_txfm_cfg(int tx_type, int tx_size) { TXFM_2D_FLIP_CFG cfg; set_flip_cfg(tx_type, &cfg); cfg.cfg = inv_txfm_cfg_ls[tx_type][tx_size]; return cfg; } TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x64_cfg(int tx_type) { TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL }; switch (tx_type) { case DCT_DCT: cfg.cfg = &inv_txfm_2d_cfg_dct_dct_64; set_flip_cfg(tx_type, &cfg); break; default: assert(0); } return cfg; } static INLINE void inv_txfm2d_add_c(const int32_t *input, int16_t *output, int stride, TXFM_2D_FLIP_CFG *cfg, int32_t *txfm_buf) { const int txfm_size = cfg->cfg->txfm_size; const int8_t *shift = cfg->cfg->shift; const int8_t *stage_range_col = cfg->cfg->stage_range_col; const int8_t *stage_range_row = cfg->cfg->stage_range_row; const int8_t *cos_bit_col = cfg->cfg->cos_bit_col; const int8_t *cos_bit_row = cfg->cfg->cos_bit_row; const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->cfg->txfm_type_col); const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->cfg->txfm_type_row); // txfm_buf's length is txfm_size * txfm_size + 2 * txfm_size // it is used for intermediate data buffering int32_t *temp_in = txfm_buf; int32_t *temp_out = temp_in + txfm_size; int32_t *buf = temp_out + txfm_size; int32_t *buf_ptr = buf; int c, r; // Rows for (r = 0; r < txfm_size; ++r) { txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row); round_shift_array(buf_ptr, txfm_size, -shift[0]); input += txfm_size; buf_ptr += txfm_size; } // Columns for (c = 0; c < txfm_size; ++c) { if (cfg->lr_flip == 0) { for (r = 0; r < txfm_size; ++r) temp_in[r] = buf[r * txfm_size + c]; } else { // flip left right for (r = 0; r < txfm_size; ++r) temp_in[r] = buf[r * txfm_size + (txfm_size - c - 1)]; } txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); round_shift_array(temp_out, txfm_size, -shift[1]); if (cfg->ud_flip == 0) { for (r = 0; r < txfm_size; ++r) output[r * stride + c] += temp_out[r]; } else { // flip upside down for (r = 0; r < txfm_size; ++r) output[r * stride + c] += temp_out[txfm_size - r - 1]; } } } void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, int stride, int tx_type, int bd) { int txfm_buf[4 * 4 + 4 + 4]; // output contains the prediction signal which is always positive and smaller // than (1 << bd) - 1 // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an // int16_t* TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_4X4); inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); clamp_block((int16_t *)output, 4, stride, 0, (1 << bd) - 1); } void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, int stride, int tx_type, int bd) { int txfm_buf[8 * 8 + 8 + 8]; // output contains the prediction signal which is always positive and smaller // than (1 << bd) - 1 // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an // int16_t* TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_8X8); inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); clamp_block((int16_t *)output, 8, stride, 0, (1 << bd) - 1); } void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, int stride, int tx_type, int bd) { int txfm_buf[16 * 16 + 16 + 16]; // output contains the prediction signal which is always positive and smaller // than (1 << bd) - 1 // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an // int16_t* TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_16X16); inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); clamp_block((int16_t *)output, 16, stride, 0, (1 << bd) - 1); } void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, int stride, int tx_type, int bd) { int txfm_buf[32 * 32 + 32 + 32]; // output contains the prediction signal which is always positive and smaller // than (1 << bd) - 1 // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an // int16_t* TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_32X32); inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); clamp_block((int16_t *)output, 32, stride, 0, (1 << bd) - 1); } void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, int stride, int tx_type, int bd) { int txfm_buf[64 * 64 + 64 + 64]; // output contains the prediction signal which is always positive and smaller // than (1 << bd) - 1 // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an // int16_t* TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_64x64_cfg(tx_type); inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); clamp_block((int16_t *)output, 64, stride, 0, (1 << bd) - 1); }