/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "./aom_config.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" #include "aom_dsp/aom_filter.h" // Half pixel shift #define HALF_PIXEL_OFFSET (BIL_SUBPEL_SHIFTS / 2) /***************************************************************************** * Horizontal additions *****************************************************************************/ static INLINE int32_t hsum_epi32_si32(__m128i v_d) { v_d = _mm_hadd_epi32(v_d, v_d); v_d = _mm_hadd_epi32(v_d, v_d); return _mm_cvtsi128_si32(v_d); } static INLINE int64_t hsum_epi64_si64(__m128i v_q) { v_q = _mm_add_epi64(v_q, _mm_srli_si128(v_q, 8)); #if ARCH_X86_64 return _mm_cvtsi128_si64(v_q); #else { int64_t tmp; _mm_storel_epi64((__m128i *)&tmp, v_q); return tmp; } #endif } #if CONFIG_AOM_HIGHBITDEPTH static INLINE int64_t hsum_epi32_si64(__m128i v_d) { const __m128i v_sign_d = _mm_cmplt_epi32(v_d, _mm_setzero_si128()); const __m128i v_0_q = _mm_unpacklo_epi32(v_d, v_sign_d); const __m128i v_1_q = _mm_unpackhi_epi32(v_d, v_sign_d); return hsum_epi64_si64(_mm_add_epi64(v_0_q, v_1_q)); } #endif // CONFIG_AOM_HIGHBITDEPTH static INLINE uint32_t calc_masked_variance(__m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h) { int64_t sum64; uint64_t sse64; // Horizontal sum sum64 = hsum_epi32_si32(v_sum_d); sse64 = hsum_epi64_si64(v_sse_q); sum64 = (sum64 >= 0) ? sum64 : -sum64; // Round sum64 = ROUND_POWER_OF_TWO(sum64, 6); sse64 = ROUND_POWER_OF_TWO(sse64, 12); // Store the SSE *sse = (uint32_t)sse64; // Compute the variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } /***************************************************************************** * n*16 Wide versions *****************************************************************************/ static INLINE unsigned int masked_variancewxh_ssse3( const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { int ii, jj; const __m128i v_zero = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); assert((w % 16) == 0); for (ii = 0; ii < h; ii++) { for (jj = 0; jj < w; jj += 16) { // Load inputs - 8 bits const __m128i v_a_b = _mm_loadu_si128((const __m128i *)(a + jj)); const __m128i v_b_b = _mm_loadu_si128((const __m128i *)(b + jj)); const __m128i v_m_b = _mm_loadu_si128((const __m128i *)(m + jj)); // Unpack to 16 bits - still containing max 8 bits const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero); const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero); const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero); const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero); const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero); const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero); // Difference: [-255, 255] const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w); const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w); // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w); const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w); const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w); const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w); // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w); const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w); // Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d); // Unpack Squared error to 64 bits const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); // Accumulate v_sum_d = _mm_add_epi32(v_sum_d, v_e0_d); v_sum_d = _mm_add_epi32(v_sum_d, v_e1_d); v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); } // Move on to next row a += a_stride; b += b_stride; m += m_stride; } return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); } #define MASKED_VARWXH(W, H) \ unsigned int aom_masked_variance##W##x##H##_ssse3( \ const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ return masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, m_stride, W, \ H, sse); \ } MASKED_VARWXH(16, 8) MASKED_VARWXH(16, 16) MASKED_VARWXH(16, 32) MASKED_VARWXH(32, 16) MASKED_VARWXH(32, 32) MASKED_VARWXH(32, 64) MASKED_VARWXH(64, 32) MASKED_VARWXH(64, 64) #if CONFIG_EXT_PARTITION MASKED_VARWXH(64, 128) MASKED_VARWXH(128, 64) MASKED_VARWXH(128, 128) #endif // CONFIG_EXT_PARTITION /***************************************************************************** * 8 Wide versions *****************************************************************************/ static INLINE unsigned int masked_variance8xh_ssse3( const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, const uint8_t *m, int m_stride, int h, unsigned int *sse) { int ii; const __m128i v_zero = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); for (ii = 0; ii < h; ii++) { // Load inputs - 8 bits const __m128i v_a_b = _mm_loadl_epi64((const __m128i *)a); const __m128i v_b_b = _mm_loadl_epi64((const __m128i *)b); const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)m); // Unpack to 16 bits - still containing max 8 bits const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero); const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero); const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); // Difference: [-255, 255] const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w); const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w); // Unpack Squared error to 64 bits const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); // Accumulate v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); // Move on to next row a += a_stride; b += b_stride; m += m_stride; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); } #define MASKED_VAR8XH(H) \ unsigned int aom_masked_variance8x##H##_ssse3( \ const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ return masked_variance8xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \ sse); \ } MASKED_VAR8XH(4) MASKED_VAR8XH(8) MASKED_VAR8XH(16) /***************************************************************************** * 4 Wide versions *****************************************************************************/ static INLINE unsigned int masked_variance4xh_ssse3( const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, const uint8_t *m, int m_stride, int h, unsigned int *sse) { int ii; const __m128i v_zero = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); assert((h % 2) == 0); for (ii = 0; ii < h / 2; ii++) { // Load 2 input rows - 8 bits const __m128i v_a0_b = _mm_cvtsi32_si128(*(const uint32_t *)a); const __m128i v_b0_b = _mm_cvtsi32_si128(*(const uint32_t *)b); const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m); const __m128i v_a1_b = _mm_cvtsi32_si128(*(const uint32_t *)(a + a_stride)); const __m128i v_b1_b = _mm_cvtsi32_si128(*(const uint32_t *)(b + b_stride)); const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride)); // Interleave 2 rows into a single register const __m128i v_a_b = _mm_unpacklo_epi32(v_a0_b, v_a1_b); const __m128i v_b_b = _mm_unpacklo_epi32(v_b0_b, v_b1_b); const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b); // Unpack to 16 bits - still containing max 8 bits const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero); const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero); const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); // Difference: [-255, 255] const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w); const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w); // Unpack Squared error to 64 bits const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); // Accumulate v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q); v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q); // Move on to next 2 row a += a_stride * 2; b += b_stride * 2; m += m_stride * 2; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); } #define MASKED_VAR4XH(H) \ unsigned int aom_masked_variance4x##H##_ssse3( \ const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ return masked_variance4xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \ sse); \ } MASKED_VAR4XH(4) MASKED_VAR4XH(8) #if CONFIG_AOM_HIGHBITDEPTH // Main calculation for n*8 wide blocks static INLINE void highbd_masked_variance64_ssse3( const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, const uint8_t *m, int m_stride, int w, int h, int64_t *sum, uint64_t *sse) { int ii, jj; const __m128i v_zero = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); assert((w % 8) == 0); for (ii = 0; ii < h; ii++) { for (jj = 0; jj < w; jj += 8) { // Load inputs - 8 bits const __m128i v_a_w = _mm_loadu_si128((const __m128i *)(a + jj)); const __m128i v_b_w = _mm_loadu_si128((const __m128i *)(b + jj)); const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)(m + jj)); // Unpack m to 16 bits - still containing max 8 bits const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); // Difference: [-4095, 4095] const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); // Error - [-4095, 4095] * [0, 64] => sum of 2 of these fits in 19 bits const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) const __m128i v_absd_w = _mm_abs_epi16(v_d_w); const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); // Square and sum the errors -> 36bits * 4 = 38bits __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); v_elo1_d = _mm_srli_si128(v_elo_d, 4); v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); // Accumulate v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); v_sse_q = _mm_add_epi64(v_sse_q, v_se_q); } // Move on to next row a += a_stride; b += b_stride; m += m_stride; } // Horizontal sum *sum = hsum_epi32_si64(v_sum_d); *sse = hsum_epi64_si64(v_sse_q); // Round *sum = (*sum >= 0) ? *sum : -*sum; *sum = ROUND_POWER_OF_TWO(*sum, 6); *sse = ROUND_POWER_OF_TWO(*sse, 12); } // Main calculation for 4 wide blocks static INLINE void highbd_masked_variance64_4wide_ssse3( const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, const uint8_t *m, int m_stride, int h, int64_t *sum, uint64_t *sse) { int ii; const __m128i v_zero = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); assert((h % 2) == 0); for (ii = 0; ii < h / 2; ii++) { // Load 2 input rows - 8 bits const __m128i v_a0_w = _mm_loadl_epi64((const __m128i *)a); const __m128i v_b0_w = _mm_loadl_epi64((const __m128i *)b); const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m); const __m128i v_a1_w = _mm_loadl_epi64((const __m128i *)(a + a_stride)); const __m128i v_b1_w = _mm_loadl_epi64((const __m128i *)(b + b_stride)); const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride)); // Interleave 2 rows into a single register const __m128i v_a_w = _mm_unpacklo_epi64(v_a0_w, v_a1_w); const __m128i v_b_w = _mm_unpacklo_epi64(v_b0_w, v_b1_w); const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b); // Unpack to 16 bits - still containing max 8 bits const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); // Difference: [-4095, 4095] const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); // Error - [-4095, 4095] * [0, 64] => fits in 19 bits (incld sign bit) const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) const __m128i v_absd_w = _mm_abs_epi16(v_d_w); const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); // Square and sum the errors -> 36bits * 4 = 38bits __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); v_elo1_d = _mm_srli_si128(v_elo_d, 4); v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); // Accumulate v_sum_d = _mm_add_epi32(v_sum_d, v_e_d); v_sse_q = _mm_add_epi64(v_sse_q, v_se_q); // Move on to next row a += a_stride * 2; b += b_stride * 2; m += m_stride * 2; } // Horizontal sum *sum = hsum_epi32_si32(v_sum_d); *sse = hsum_epi64_si64(v_sse_q); // Round *sum = (*sum >= 0) ? *sum : -*sum; *sum = ROUND_POWER_OF_TWO(*sum, 6); *sse = ROUND_POWER_OF_TWO(*sse, 12); } static INLINE unsigned int highbd_masked_variancewxh_ssse3( const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { uint64_t sse64; int64_t sum64; if (w == 4) highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, h, &sum64, &sse64); else highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, &sum64, &sse64); // Store the SSE *sse = (uint32_t)sse64; // Compute and return variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } static INLINE unsigned int highbd_10_masked_variancewxh_ssse3( const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { uint64_t sse64; int64_t sum64; if (w == 4) highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, h, &sum64, &sse64); else highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, &sum64, &sse64); // Normalise sum64 = ROUND_POWER_OF_TWO(sum64, 2); sse64 = ROUND_POWER_OF_TWO(sse64, 4); // Store the SSE *sse = (uint32_t)sse64; // Compute and return variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } static INLINE unsigned int highbd_12_masked_variancewxh_ssse3( const uint16_t *a, int a_stride, const uint16_t *b, int b_stride, const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) { uint64_t sse64; int64_t sum64; if (w == 4) highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride, h, &sum64, &sse64); else highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h, &sum64, &sse64); sum64 = ROUND_POWER_OF_TWO(sum64, 4); sse64 = ROUND_POWER_OF_TWO(sse64, 8); // Store the SSE *sse = (uint32_t)sse64; // Compute and return variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } #define HIGHBD_MASKED_VARWXH(W, H) \ unsigned int aom_highbd_masked_variance##W##x##H##_ssse3( \ const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ return highbd_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ m_stride, W, H, sse); \ } \ \ unsigned int aom_highbd_10_masked_variance##W##x##H##_ssse3( \ const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ return highbd_10_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ m_stride, W, H, sse); \ } \ \ unsigned int aom_highbd_12_masked_variance##W##x##H##_ssse3( \ const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \ const uint8_t *m, int m_stride, unsigned int *sse) { \ uint16_t *a = CONVERT_TO_SHORTPTR(a8); \ uint16_t *b = CONVERT_TO_SHORTPTR(b8); \ return highbd_12_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \ m_stride, W, H, sse); \ } HIGHBD_MASKED_VARWXH(4, 4) HIGHBD_MASKED_VARWXH(4, 8) HIGHBD_MASKED_VARWXH(8, 4) HIGHBD_MASKED_VARWXH(8, 8) HIGHBD_MASKED_VARWXH(8, 16) HIGHBD_MASKED_VARWXH(16, 8) HIGHBD_MASKED_VARWXH(16, 16) HIGHBD_MASKED_VARWXH(16, 32) HIGHBD_MASKED_VARWXH(32, 16) HIGHBD_MASKED_VARWXH(32, 32) HIGHBD_MASKED_VARWXH(32, 64) HIGHBD_MASKED_VARWXH(64, 32) HIGHBD_MASKED_VARWXH(64, 64) #if CONFIG_EXT_PARTITION HIGHBD_MASKED_VARWXH(64, 128) HIGHBD_MASKED_VARWXH(128, 64) HIGHBD_MASKED_VARWXH(128, 128) #endif // CONFIG_EXT_PARTITION #endif ////////////////////////////////////////////////////////////////////////////// // Sub pixel versions ////////////////////////////////////////////////////////////////////////////// typedef __m128i (*filter_fn_t)(__m128i v_a_b, __m128i v_b_b, __m128i v_filter_b); static INLINE __m128i apply_filter_avg(const __m128i v_a_b, const __m128i v_b_b, const __m128i v_filter_b) { (void)v_filter_b; return _mm_avg_epu8(v_a_b, v_b_b); } static INLINE __m128i apply_filter(const __m128i v_a_b, const __m128i v_b_b, const __m128i v_filter_b) { const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1)); __m128i v_input_lo_b = _mm_unpacklo_epi8(v_a_b, v_b_b); __m128i v_input_hi_b = _mm_unpackhi_epi8(v_a_b, v_b_b); __m128i v_temp0_w = _mm_maddubs_epi16(v_input_lo_b, v_filter_b); __m128i v_temp1_w = _mm_maddubs_epi16(v_input_hi_b, v_filter_b); __m128i v_res_lo_w = _mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS); __m128i v_res_hi_w = _mm_srai_epi16(_mm_add_epi16(v_temp1_w, v_rounding_w), FILTER_BITS); return _mm_packus_epi16(v_res_lo_w, v_res_hi_w); } // Apply the filter to the contents of the lower half of a and b static INLINE void apply_filter_lo(const __m128i v_a_lo_b, const __m128i v_b_lo_b, const __m128i v_filter_b, __m128i *v_res_w) { const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1)); __m128i v_input_b = _mm_unpacklo_epi8(v_a_lo_b, v_b_lo_b); __m128i v_temp0_w = _mm_maddubs_epi16(v_input_b, v_filter_b); *v_res_w = _mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS); } static void sum_and_sse(const __m128i v_a_b, const __m128i v_b_b, const __m128i v_m_b, __m128i *v_sum_d, __m128i *v_sse_q) { const __m128i v_zero = _mm_setzero_si128(); // Unpack to 16 bits - still containing max 8 bits const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero); const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero); const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero); const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero); const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero); const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero); // Difference: [-255, 255] const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w); const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w); // Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w); const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w); const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w); const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w); // Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w); const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w); // Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d); // Unpack Squared error to 64 bits const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero); const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero); // Accumulate *v_sum_d = _mm_add_epi32(*v_sum_d, v_e0_d); *v_sum_d = _mm_add_epi32(*v_sum_d, v_e1_d); *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_lo_q); *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_hi_q); } // Functions for width (W) >= 16 unsigned int aom_masked_subpel_varWxH_xzero(const uint8_t *src, int src_stride, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, filter_fn_t filter_fn) { int i, j; __m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filter_b = _mm_set1_epi16( (bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); for (j = 0; j < w; j += 16) { // Load the first row ready v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); // Process 2 rows at a time for (i = 0; i < h; i += 2) { // Load the next row apply the filter v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride)); v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b); // Load the dst and msk for the variance calculation v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Load the next row apply the filter v_src0_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2)); v_res_b = filter_fn(v_src1_b, v_src0_b, v_filter_b); // Load the dst and msk for the variance calculation v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride)); v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j + msk_stride)); sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next block of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } // Reset to the top of the block src -= src_stride * h; dst -= dst_stride * h; msk -= msk_stride * h; } return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); } unsigned int aom_masked_subpel_varWxH_yzero(const uint8_t *src, int src_stride, int xoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, filter_fn_t filter_fn) { int i, j; __m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filter_b = _mm_set1_epi16( (bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i++) { for (j = 0; j < w; j += 16) { // Load this row and one below & apply the filter to them v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1)); v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b); // Load the dst and msk for the variance calculation v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); } src += src_stride; dst += dst_stride; msk += msk_stride; } return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); } unsigned int aom_masked_subpel_varWxH_xnonzero_ynonzero( const uint8_t *src, int src_stride, int xoffset, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, filter_fn_t xfilter_fn, filter_fn_t yfilter_fn) { int i, j; __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b; __m128i v_filtered0_b, v_filtered1_b, v_res_b, v_dst_b, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filterx_b = _mm_set1_epi16( (bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); const __m128i v_filtery_b = _mm_set1_epi16( (bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); assert(xoffset < BIL_SUBPEL_SHIFTS); for (j = 0; j < w; j += 16) { // Load the first row ready v_src0_b = _mm_loadu_si128((const __m128i *)(src + j)); v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1)); v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b); // Process 2 rows at a time for (i = 0; i < h; i += 2) { // Load the next row & apply the filter v_src2_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j)); v_src3_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1)); v_filtered1_b = xfilter_fn(v_src2_b, v_src3_b, v_filterx_b); // Load the dst and msk for the variance calculation v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j)); // Complete the calculation for this row and add it to the running total v_res_b = yfilter_fn(v_filtered0_b, v_filtered1_b, v_filtery_b); sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Load the next row & apply the filter v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j)); v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1)); v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b); // Load the dst and msk for the variance calculation v_dst_b = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j)); v_msk_b = _mm_loadu_si128((const __m128i *)(msk + msk_stride + j)); // Complete the calculation for this row and add it to the running total v_res_b = yfilter_fn(v_filtered1_b, v_filtered0_b, v_filtery_b); sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next block of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } // Reset to the top of the block src -= src_stride * h; dst -= dst_stride * h; msk -= msk_stride * h; } return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h); } // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, // xmm[63:32] = row 3, xmm[31:0] = row 4 unsigned int aom_masked_subpel_var4xH_xzero(const uint8_t *src, int src_stride, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered1_w, v_filtered2_w; __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b; __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); // Load the first row of src data ready v_src0_b = _mm_loadl_epi64((const __m128i *)src); for (i = 0; i < h; i += 4) { // Load the rest of the source data for these rows v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); v_src1_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); v_src3_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4)); // Load the dst data v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); // Load the mask data v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); // Apply the y filter if (yoffset == HALF_PIXEL_OFFSET) { v_src1_b = _mm_unpacklo_epi64(v_src3_b, v_src1_b); v_src2_b = _mm_or_si128(_mm_slli_si128(v_src1_b, 4), _mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0))); v_res_b = _mm_avg_epu8(v_src1_b, v_src2_b); } else { v_src2_b = _mm_or_si128(_mm_slli_si128(v_src1_b, 4), _mm_and_si128(v_src2_b, _mm_setr_epi32(-1, 0, 0, 0))); apply_filter_lo(v_src1_b, v_src2_b, v_filter_b, &v_filtered1_w); v_src2_b = _mm_or_si128(_mm_slli_si128(v_src3_b, 4), _mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0))); apply_filter_lo(v_src3_b, v_src2_b, v_filter_b, &v_filtered2_w); v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered1_w); } // Compute the sum and SSE sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 4; dst += dst_stride * 4; msk += msk_stride * 4; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); } // Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2 unsigned int aom_masked_subpel_var8xH_xzero(const uint8_t *src, int src_stride, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_res_b; __m128i v_dst_b = _mm_setzero_si128(); __m128i v_msk_b = _mm_setzero_si128(); __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); // Load the first row of src data ready v_src0_b = _mm_loadl_epi64((const __m128i *)src); for (i = 0; i < h; i += 2) { if (yoffset == HALF_PIXEL_OFFSET) { // Load the rest of the source data for these rows v_src1_b = _mm_or_si128( _mm_slli_si128(v_src0_b, 8), _mm_loadl_epi64((const __m128i *)(src + src_stride * 1))); v_src0_b = _mm_or_si128( _mm_slli_si128(v_src1_b, 8), _mm_loadl_epi64((const __m128i *)(src + src_stride * 2))); // Apply the y filter v_res_b = _mm_avg_epu8(v_src1_b, v_src0_b); } else { // Load the data and apply the y filter v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); apply_filter_lo(v_src0_b, v_src1_b, v_filter_b, &v_filtered0_w); v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); apply_filter_lo(v_src1_b, v_src0_b, v_filter_b, &v_filtered1_w); v_res_b = _mm_packus_epi16(v_filtered1_w, v_filtered0_w); } // Load the dst data v_dst_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0))); // Load the mask data v_msk_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0))); // Compute the sum and SSE sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); } // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, // xmm[63:32] = row 3, xmm[31:0] = row 4 unsigned int aom_masked_subpel_var4xH_yzero(const uint8_t *src, int src_stride, int xoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w; __m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b; __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b; __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i += 4) { // Load the src data v_src0_b = _mm_loadl_epi64((const __m128i *)src); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b); v_src2_shift_b = _mm_srli_si128(v_src2_b, 1); v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); v_src3_shift_b = _mm_srli_si128(v_src3_b, 1); v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b); // Load the dst data v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); // Load the mask data v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b); v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b); v_res_b = _mm_avg_epu8(v_src0_b, v_src0_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w); apply_filter_lo(v_src2_b, v_src2_shift_b, v_filter_b, &v_filtered2_w); v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered0_w); } // Compute the sum and SSE sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 4; dst += dst_stride * 4; msk += msk_stride * 4; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); } unsigned int aom_masked_subpel_var8xH_yzero(const uint8_t *src, int src_stride, int xoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w; __m128i v_src0_shift_b, v_src1_shift_b, v_res_b, v_dst_b, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i += 2) { // Load the src data v_src0_b = _mm_loadu_si128((const __m128i *)(src)); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride)); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); v_res_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w); apply_filter_lo(v_src1_b, v_src1_shift_b, v_filter_b, &v_filtered1_w); v_res_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); } // Load the dst data v_dst_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); // Load the mask data v_msk_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); // Compute the sum and SSE sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); } // Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2, // xmm[63:32] = row 3, xmm[31:0] = row 4 unsigned int aom_masked_subpel_var4xH_xnonzero_ynonzero( const uint8_t *src, int src_stride, int xoffset, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w; __m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b; __m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b, v_temp_b; __m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_extra_row_b, v_res_b; __m128i v_xres_b[2]; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); __m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); assert(yoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i += 4) { // Load the src data v_src0_b = _mm_loadl_epi64((const __m128i *)src); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b); v_src2_shift_b = _mm_srli_si128(v_src2_b, 1); v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b); v_src3_shift_b = _mm_srli_si128(v_src3_b, 1); v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b); v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b); v_xres_b[i == 0 ? 0 : 1] = _mm_avg_epu8(v_src0_b, v_src0_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); apply_filter_lo(v_src2_b, v_src2_shift_b, v_filterx_b, &v_filtered2_w); v_xres_b[i == 0 ? 0 : 1] = _mm_packus_epi16(v_filtered2_w, v_filtered0_w); } // Move onto the next set of rows src += src_stride * 4; } // Load one more row to be used in the y filter v_src0_b = _mm_loadl_epi64((const __m128i *)src); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_extra_row_b = _mm_and_si128(_mm_avg_epu8(v_src0_b, v_src0_shift_b), _mm_setr_epi32(-1, 0, 0, 0)); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); v_extra_row_b = _mm_and_si128(_mm_packus_epi16(v_filtered0_w, _mm_setzero_si128()), _mm_setr_epi32(-1, 0, 0, 0)); } for (i = 0; i < h; i += 4) { if (h == 8 && i == 0) { v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[0], 4), _mm_srli_si128(v_xres_b[1], 12)); } else { v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[i == 0 ? 0 : 1], 4), v_extra_row_b); } // Apply the y filter if (yoffset == HALF_PIXEL_OFFSET) { v_res_b = _mm_avg_epu8(v_xres_b[i == 0 ? 0 : 1], v_temp_b); } else { v_res_b = apply_filter(v_xres_b[i == 0 ? 0 : 1], v_temp_b, v_filtery_b); } // Load the dst data v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0)); v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1)); v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b); v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2)); v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3)); v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b); v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b); // Load the mask data v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0)); v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1)); v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b); v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2)); v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3)); v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b); v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b); // Compute the sum and SSE sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows dst += dst_stride * 4; msk += msk_stride * 4; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h); } unsigned int aom_masked_subpel_var8xH_xnonzero_ynonzero( const uint8_t *src, int src_stride, int xoffset, int yoffset, const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h) { int i; __m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_dst_b, v_msk_b; __m128i v_src0_shift_b, v_src1_shift_b; __m128i v_xres0_b, v_xres1_b, v_res_b, v_temp_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]); __m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); assert(yoffset < BIL_SUBPEL_SHIFTS); // Load the first block of src data v_src0_b = _mm_loadu_si128((const __m128i *)(src)); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride)); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); } for (i = 0; i < h; i += 4) { // Load the next block of src data v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2)); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 3)); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); v_xres1_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); v_xres1_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); } // Apply the y filter to the previous block v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres0_b, 8), _mm_slli_si128(v_xres1_b, 8)); if (yoffset == HALF_PIXEL_OFFSET) { v_res_b = _mm_avg_epu8(v_xres0_b, v_temp_b); } else { v_res_b = apply_filter(v_xres0_b, v_temp_b, v_filtery_b); } // Load the dst data v_dst_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); // Load the mask data v_msk_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); // Compute the sum and SSE sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Load the next block of src data v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 4)); v_src0_shift_b = _mm_srli_si128(v_src0_b, 1); v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 5)); v_src1_shift_b = _mm_srli_si128(v_src1_b, 1); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b); v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b); v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b); } else { apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w); apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w); v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w); } // Apply the y filter to the previous block v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres1_b, 8), _mm_slli_si128(v_xres0_b, 8)); if (yoffset == HALF_PIXEL_OFFSET) { v_res_b = _mm_avg_epu8(v_xres1_b, v_temp_b); } else { v_res_b = apply_filter(v_xres1_b, v_temp_b, v_filtery_b); } // Load the dst data v_dst_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3))); // Load the mask data v_msk_b = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3))); // Compute the sum and SSE sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 4; dst += dst_stride * 4; msk += msk_stride * 4; } return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h); } // For W >=16 #define MASK_SUBPIX_VAR_LARGE(W, H) \ unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse) { \ assert(W % 16 == 0); \ if (xoffset == 0) { \ if (yoffset == 0) \ return aom_masked_variance##W##x##H##_ssse3( \ src, src_stride, dst, dst_stride, msk, msk_stride, sse); \ else if (yoffset == HALF_PIXEL_OFFSET) \ return aom_masked_subpel_varWxH_xzero( \ src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, apply_filter_avg); \ else \ return aom_masked_subpel_varWxH_xzero(src, src_stride, yoffset, dst, \ dst_stride, msk, msk_stride, \ sse, W, H, apply_filter); \ } else if (yoffset == 0) { \ if (xoffset == HALF_PIXEL_OFFSET) \ return aom_masked_subpel_varWxH_yzero( \ src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, apply_filter_avg); \ else \ return aom_masked_subpel_varWxH_yzero(src, src_stride, xoffset, dst, \ dst_stride, msk, msk_stride, \ sse, W, H, apply_filter); \ } else if (xoffset == HALF_PIXEL_OFFSET) { \ if (yoffset == HALF_PIXEL_OFFSET) \ return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \ dst_stride, msk, msk_stride, sse, W, H, apply_filter_avg, \ apply_filter_avg); \ else \ return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \ msk_stride, sse, W, H, apply_filter_avg, apply_filter); \ } else { \ if (yoffset == HALF_PIXEL_OFFSET) \ return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, apply_filter, apply_filter_avg); \ else \ return aom_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \ msk_stride, sse, W, H, apply_filter, apply_filter); \ } \ } // For W < 16 #define MASK_SUBPIX_VAR_SMALL(W, H) \ unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse) { \ assert(W == 4 || W == 8); \ if (xoffset == 0 && yoffset == 0) \ return aom_masked_variance##W##x##H##_ssse3( \ src, src_stride, dst, dst_stride, msk, msk_stride, sse); \ else if (xoffset == 0) \ return aom_masked_subpel_var##W##xH_xzero( \ src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H); \ else if (yoffset == 0) \ return aom_masked_subpel_var##W##xH_yzero( \ src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H); \ else \ return aom_masked_subpel_var##W##xH_xnonzero_ynonzero( \ src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \ sse, H); \ } MASK_SUBPIX_VAR_SMALL(4, 4) MASK_SUBPIX_VAR_SMALL(4, 8) MASK_SUBPIX_VAR_SMALL(8, 4) MASK_SUBPIX_VAR_SMALL(8, 8) MASK_SUBPIX_VAR_SMALL(8, 16) MASK_SUBPIX_VAR_LARGE(16, 8) MASK_SUBPIX_VAR_LARGE(16, 16) MASK_SUBPIX_VAR_LARGE(16, 32) MASK_SUBPIX_VAR_LARGE(32, 16) MASK_SUBPIX_VAR_LARGE(32, 32) MASK_SUBPIX_VAR_LARGE(32, 64) MASK_SUBPIX_VAR_LARGE(64, 32) MASK_SUBPIX_VAR_LARGE(64, 64) #if CONFIG_EXT_PARTITION MASK_SUBPIX_VAR_LARGE(64, 128) MASK_SUBPIX_VAR_LARGE(128, 64) MASK_SUBPIX_VAR_LARGE(128, 128) #endif // CONFIG_EXT_PARTITION #if CONFIG_AOM_HIGHBITDEPTH typedef uint32_t (*highbd_calc_masked_var_t)(__m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h); typedef unsigned int (*highbd_variance_fn_t)(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, const uint8_t *m, int m_stride, unsigned int *sse); typedef __m128i (*highbd_filter_fn_t)(__m128i v_a_w, __m128i v_b_w, __m128i v_filter_w); static INLINE __m128i highbd_apply_filter_avg(const __m128i v_a_w, const __m128i v_b_w, const __m128i v_filter_w) { (void)v_filter_w; return _mm_avg_epu16(v_a_w, v_b_w); } static INLINE __m128i highbd_apply_filter(const __m128i v_a_w, const __m128i v_b_w, const __m128i v_filter_w) { const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1)); __m128i v_input_lo_w = _mm_unpacklo_epi16(v_a_w, v_b_w); __m128i v_input_hi_w = _mm_unpackhi_epi16(v_a_w, v_b_w); __m128i v_temp0_d = _mm_madd_epi16(v_input_lo_w, v_filter_w); __m128i v_temp1_d = _mm_madd_epi16(v_input_hi_w, v_filter_w); __m128i v_res_lo_d = _mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS); __m128i v_res_hi_d = _mm_srai_epi32(_mm_add_epi32(v_temp1_d, v_rounding_d), FILTER_BITS); return _mm_packs_epi32(v_res_lo_d, v_res_hi_d); } // Apply the filter to the contents of the lower half of a and b static INLINE void highbd_apply_filter_lo(const __m128i v_a_lo_w, const __m128i v_b_lo_w, const __m128i v_filter_w, __m128i *v_res_d) { const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1)); __m128i v_input_w = _mm_unpacklo_epi16(v_a_lo_w, v_b_lo_w); __m128i v_temp0_d = _mm_madd_epi16(v_input_w, v_filter_w); *v_res_d = _mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS); } static void highbd_sum_and_sse(const __m128i v_a_w, const __m128i v_b_w, const __m128i v_m_b, __m128i *v_sum_d, __m128i *v_sse_q) { const __m128i v_zero = _mm_setzero_si128(); const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero); // Difference: [-2^12, 2^12] => 13 bits (incld sign bit) const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w); // Error - [-4095, 4095] * [0, 64] & sum pairs => fits in 19 + 1 bits const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w); // Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit) const __m128i v_absd_w = _mm_abs_epi16(v_d_w); const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero); const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero); const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d); const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero); const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero); const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d); // Square and sum the errors -> 36bits * 4 = 38bits __m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d; v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d); v_elo1_d = _mm_srli_si128(v_elo_d, 4); v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d); v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q); v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d); v_ehi3_d = _mm_srli_si128(v_ehi_d, 4); v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d); v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q); v_se_q = _mm_add_epi64(v_se0_q, v_se1_q); // Accumulate *v_sum_d = _mm_add_epi32(*v_sum_d, v_e_d); *v_sse_q = _mm_add_epi64(*v_sse_q, v_se_q); } static INLINE uint32_t highbd_10_calc_masked_variance( __m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h) { int64_t sum64; uint64_t sse64; // Horizontal sum sum64 = hsum_epi32_si32(v_sum_d); sse64 = hsum_epi64_si64(v_sse_q); sum64 = (sum64 >= 0) ? sum64 : -sum64; // Round sum64 = ROUND_POWER_OF_TWO(sum64, 6); sse64 = ROUND_POWER_OF_TWO(sse64, 12); // Normalise sum64 = ROUND_POWER_OF_TWO(sum64, 2); sse64 = ROUND_POWER_OF_TWO(sse64, 4); // Store the SSE *sse = (uint32_t)sse64; // Compute the variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } static INLINE uint32_t highbd_12_calc_masked_variance( __m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h) { int64_t sum64; uint64_t sse64; // Horizontal sum sum64 = hsum_epi32_si64(v_sum_d); sse64 = hsum_epi64_si64(v_sse_q); sum64 = (sum64 >= 0) ? sum64 : -sum64; // Round sum64 = ROUND_POWER_OF_TWO(sum64, 6); sse64 = ROUND_POWER_OF_TWO(sse64, 12); // Normalise sum64 = ROUND_POWER_OF_TWO(sum64, 4); sse64 = ROUND_POWER_OF_TWO(sse64, 8); // Store the SSE *sse = (uint32_t)sse64; // Compute the variance return *sse - (uint32_t)((sum64 * sum64) / (w * h)); } // High bit depth functions for width (W) >= 8 unsigned int aom_highbd_masked_subpel_varWxH_xzero( const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, highbd_filter_fn_t filter_fn, highbd_calc_masked_var_t calc_var) { int i, j; __m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); for (j = 0; j < w; j += 8) { // Load the first row ready v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); // Process 2 rows at a time for (i = 0; i < h; i += 2) { // Load the next row apply the filter v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride)); v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w); // Load the dst and msk for the variance calculation v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Load the next row apply the filter v_src0_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2)); v_res_w = filter_fn(v_src1_w, v_src0_w, v_filter_w); // Load the dst and msk for the variance calculation v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride)); v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j + msk_stride)); highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next block of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } // Reset to the top of the block src -= src_stride * h; dst -= dst_stride * h; msk -= msk_stride * h; } return calc_var(v_sum_d, v_sse_q, sse, w, h); } unsigned int aom_highbd_masked_subpel_varWxH_yzero( const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, highbd_filter_fn_t filter_fn, highbd_calc_masked_var_t calc_var) { int i, j; __m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + bilinear_filters_2t[xoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i++) { for (j = 0; j < w; j += 8) { // Load this row & apply the filter to them v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1)); v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w); // Load the dst and msk for the variance calculation v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); } src += src_stride; dst += dst_stride; msk += msk_stride; } return calc_var(v_sum_d, v_sse_q, sse, w, h); } unsigned int aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( const uint16_t *src, int src_stride, int xoffset, int yoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int w, int h, highbd_filter_fn_t xfilter_fn, highbd_filter_fn_t yfilter_fn, highbd_calc_masked_var_t calc_var) { int i, j; __m128i v_src0_w, v_src1_w, v_src2_w, v_src3_w; __m128i v_filtered0_w, v_filtered1_w, v_res_w, v_dst_w, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); const __m128i v_filterx_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + bilinear_filters_2t[xoffset][0]); const __m128i v_filtery_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + bilinear_filters_2t[yoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); assert(yoffset < BIL_SUBPEL_SHIFTS); for (j = 0; j < w; j += 8) { // Load the first row ready v_src0_w = _mm_loadu_si128((const __m128i *)(src + j)); v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1)); v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w); // Process 2 rows at a time for (i = 0; i < h; i += 2) { // Load the next row & apply the filter v_src2_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j)); v_src3_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1)); v_filtered1_w = xfilter_fn(v_src2_w, v_src3_w, v_filterx_w); // Load the dst and msk for the variance calculation v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j)); v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j)); // Complete the calculation for this row and add it to the running total v_res_w = yfilter_fn(v_filtered0_w, v_filtered1_w, v_filtery_w); highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Load the next row & apply the filter v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j)); v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1)); v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w); // Load the dst and msk for the variance calculation v_dst_w = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j)); v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + msk_stride + j)); // Complete the calculation for this row and add it to the running total v_res_w = yfilter_fn(v_filtered1_w, v_filtered0_w, v_filtery_w); highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next block of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } // Reset to the top of the block src -= src_stride * h; dst -= dst_stride * h; msk -= msk_stride * h; } return calc_var(v_sum_d, v_sse_q, sse, w, h); } // Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2 unsigned int aom_highbd_masked_subpel_var4xH_xzero( const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h, highbd_calc_masked_var_t calc_var) { int i; __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_res_w; __m128i v_dst_w, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + bilinear_filters_2t[yoffset][0]); assert(yoffset < BIL_SUBPEL_SHIFTS); // Load the first row of src data ready v_src0_w = _mm_loadl_epi64((const __m128i *)src); for (i = 0; i < h; i += 2) { if (yoffset == HALF_PIXEL_OFFSET) { // Load the rest of the source data for these rows v_src1_w = _mm_or_si128( _mm_slli_si128(v_src0_w, 8), _mm_loadl_epi64((const __m128i *)(src + src_stride * 1))); v_src0_w = _mm_or_si128( _mm_slli_si128(v_src1_w, 8), _mm_loadl_epi64((const __m128i *)(src + src_stride * 2))); // Apply the y filter v_res_w = _mm_avg_epu16(v_src1_w, v_src0_w); } else { // Load the data and apply the y filter v_src1_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1)); highbd_apply_filter_lo(v_src0_w, v_src1_w, v_filter_w, &v_filtered0_d); v_src0_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); highbd_apply_filter_lo(v_src1_w, v_src0_w, v_filter_w, &v_filtered1_d); v_res_w = _mm_packs_epi32(v_filtered1_d, v_filtered0_d); } // Load the dst data v_dst_w = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0))); // Load the mask data v_msk_b = _mm_unpacklo_epi32( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0))); // Compute the sum and SSE highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } return calc_var(v_sum_d, v_sse_q, sse, 4, h); } unsigned int aom_highbd_masked_subpel_var4xH_yzero( const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h, highbd_calc_masked_var_t calc_var) { int i; __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d; __m128i v_src0_shift_w, v_src1_shift_w, v_res_w, v_dst_w, v_msk_b; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + bilinear_filters_2t[xoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); for (i = 0; i < h; i += 2) { // Load the src data v_src0_w = _mm_loadu_si128((const __m128i *)(src)); v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride)); v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); v_res_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); } else { highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filter_w, &v_filtered0_d); highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filter_w, &v_filtered1_d); v_res_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); } // Load the dst data v_dst_w = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); // Load the mask data v_msk_b = _mm_unpacklo_epi32( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); // Compute the sum and SSE highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 2; dst += dst_stride * 2; msk += msk_stride * 2; } return calc_var(v_sum_d, v_sse_q, sse, 4, h); } unsigned int aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero( const uint16_t *src, int src_stride, int xoffset, int yoffset, const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse, int h, highbd_calc_masked_var_t calc_var) { int i; __m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_dst_w, v_msk_b; __m128i v_src0_shift_w, v_src1_shift_w; __m128i v_xres0_w, v_xres1_w, v_res_w, v_temp_w; __m128i v_sum_d = _mm_setzero_si128(); __m128i v_sse_q = _mm_setzero_si128(); __m128i v_filterx_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) + bilinear_filters_2t[xoffset][0]); __m128i v_filtery_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) + bilinear_filters_2t[yoffset][0]); assert(xoffset < BIL_SUBPEL_SHIFTS); assert(yoffset < BIL_SUBPEL_SHIFTS); // Load the first block of src data v_src0_w = _mm_loadu_si128((const __m128i *)(src)); v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride)); v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); } else { highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, &v_filtered0_d); highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, &v_filtered1_d); v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); } for (i = 0; i < h; i += 4) { // Load the next block of src data v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2)); v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 3)); v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); v_xres1_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); } else { highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, &v_filtered0_d); highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, &v_filtered1_d); v_xres1_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); } // Apply the y filter to the previous block v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres0_w, 8), _mm_slli_si128(v_xres1_w, 8)); if (yoffset == HALF_PIXEL_OFFSET) { v_res_w = _mm_avg_epu16(v_xres0_w, v_temp_w); } else { v_res_w = highbd_apply_filter(v_xres0_w, v_temp_w, v_filtery_w); } // Load the dst data v_dst_w = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1))); // Load the mask data v_msk_b = _mm_unpacklo_epi32( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1))); // Compute the sum and SSE highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Load the next block of src data v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 4)); v_src0_shift_w = _mm_srli_si128(v_src0_w, 2); v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 5)); v_src1_shift_w = _mm_srli_si128(v_src1_w, 2); // Apply the x filter if (xoffset == HALF_PIXEL_OFFSET) { v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w); v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w); v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w); } else { highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w, &v_filtered0_d); highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w, &v_filtered1_d); v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d); } // Apply the y filter to the previous block v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres1_w, 8), _mm_slli_si128(v_xres0_w, 8)); if (yoffset == HALF_PIXEL_OFFSET) { v_res_w = _mm_avg_epu16(v_xres1_w, v_temp_w); } else { v_res_w = highbd_apply_filter(v_xres1_w, v_temp_w, v_filtery_w); } // Load the dst data v_dst_w = _mm_unpacklo_epi64( _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)), _mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3))); // Load the mask data v_msk_b = _mm_unpacklo_epi32( _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)), _mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3))); // Compute the sum and SSE highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q); // Move onto the next set of rows src += src_stride * 4; dst += dst_stride * 4; msk += msk_stride * 4; } return calc_var(v_sum_d, v_sse_q, sse, 4, h); } // For W >=8 #define HIGHBD_MASK_SUBPIX_VAR_LARGE(W, H) \ unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse, highbd_calc_masked_var_t calc_var, \ highbd_variance_fn_t full_variance_function) { \ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ assert(W % 8 == 0); \ if (xoffset == 0) { \ if (yoffset == 0) \ return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \ msk_stride, sse); \ else if (yoffset == HALF_PIXEL_OFFSET) \ return aom_highbd_masked_subpel_varWxH_xzero( \ src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \ else \ return aom_highbd_masked_subpel_varWxH_xzero( \ src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, \ W, H, highbd_apply_filter, calc_var); \ } else if (yoffset == 0) { \ if (xoffset == HALF_PIXEL_OFFSET) \ return aom_highbd_masked_subpel_varWxH_yzero( \ src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \ else \ return aom_highbd_masked_subpel_varWxH_yzero( \ src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, \ W, H, highbd_apply_filter, calc_var); \ } else if (xoffset == HALF_PIXEL_OFFSET) { \ if (yoffset == HALF_PIXEL_OFFSET) \ return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \ dst_stride, msk, msk_stride, sse, W, H, highbd_apply_filter_avg, \ highbd_apply_filter_avg, calc_var); \ else \ return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \ msk_stride, sse, W, H, highbd_apply_filter_avg, \ highbd_apply_filter, calc_var); \ } else { \ if (yoffset == HALF_PIXEL_OFFSET) \ return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \ msk_stride, sse, W, H, highbd_apply_filter, \ highbd_apply_filter_avg, calc_var); \ else \ return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \ src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \ msk_stride, sse, W, H, highbd_apply_filter, highbd_apply_filter, \ calc_var); \ } \ } // For W < 8 #define HIGHBD_MASK_SUBPIX_VAR_SMALL(W, H) \ unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse, highbd_calc_masked_var_t calc_var, \ highbd_variance_fn_t full_variance_function) { \ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ assert(W == 4); \ if (xoffset == 0 && yoffset == 0) \ return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \ msk_stride, sse); \ else if (xoffset == 0) \ return aom_highbd_masked_subpel_var4xH_xzero( \ src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H, \ calc_var); \ else if (yoffset == 0) \ return aom_highbd_masked_subpel_var4xH_yzero( \ src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H, \ calc_var); \ else \ return aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero( \ src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \ sse, H, calc_var); \ } #define HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(W, H) \ unsigned int aom_highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse) { \ return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ sse, calc_masked_variance, \ aom_highbd_masked_variance##W##x##H##_ssse3); \ } \ unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse) { \ return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ sse, highbd_10_calc_masked_variance, \ aom_highbd_10_masked_variance##W##x##H##_ssse3); \ } \ unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \ const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \ unsigned int *sse) { \ return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \ src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \ sse, highbd_12_calc_masked_variance, \ aom_highbd_12_masked_variance##W##x##H##_ssse3); \ } HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 4) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 4) HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 8) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 8) HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 4) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 4) HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 8) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 8) HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 16) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 16) HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 8) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 8) HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 16) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 16) HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 32) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 32) HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 16) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 16) HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 32) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 32) HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 64) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 64) HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 32) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 32) HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 64) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 64) #if CONFIG_EXT_PARTITION HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 128) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 128) HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 64) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 64) HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 128) HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 128) #endif // CONFIG_EXT_PARTITION #endif