/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #if CONFIG_PALETTE #include "vp9/common/vp9_palette.h" #endif // CONFIG_PALETTE #if CONFIG_SR_MODE #include "vp9/common/vp9_sr_txfm.h" #endif // CONFIG_SR_MODE #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_cost.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_subexp.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/encoder/vp9_write_bit_buffer.h" static struct vp9_token intra_mode_encodings[INTRA_MODES]; static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS]; #if CONFIG_EXT_PARTITION static struct vp9_token ext_partition_encodings[EXT_PARTITION_TYPES]; #endif static struct vp9_token partition_encodings[PARTITION_TYPES]; static struct vp9_token inter_mode_encodings[INTER_MODES]; #if CONFIG_SR_MODE && SR_USE_MULTI_F static struct vp9_token sr_usfilter_encodings[SR_USFILTER_NUM]; #endif // CONFIG_SR_MODE && SR_USE_MULTI_F #if CONFIG_EXT_TX static struct vp9_token ext_tx_encodings[EXT_TX_TYPES]; #if CONFIG_WAVELETS static struct vp9_token ext_tx_large_encodings[EXT_TX_TYPES_LARGE]; #endif // CONFIG_WAVELETS #endif // CONFIG_EXT_TX #if CONFIG_PALETTE static struct vp9_token palette_size_encodings[PALETTE_SIZES]; static struct vp9_token palette_color_encodings[PALETTE_COLORS]; #endif // CONFIG_PALETTE #if CONFIG_COPY_MODE static struct vp9_token copy_mode_encodings_l2[2]; static struct vp9_token copy_mode_encodings[COPY_MODE_COUNT - 1]; #endif #if CONFIG_NEW_INTER static struct vp9_token inter_compound_mode_encodings[INTER_COMPOUND_MODES]; #endif // CONFIG_NEW_INTER #if CONFIG_GLOBAL_MOTION static struct vp9_token global_motion_types_encodings[GLOBAL_MOTION_TYPES]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES static struct vp9_token dq_profile_encodings[QUANT_PROFILES]; #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES #if CONFIG_SUPERTX static int vp9_check_supertx(VP9_COMMON *cm, int mi_row, int mi_col, BLOCK_SIZE bsize) { MODE_INFO *mi; mi = cm->mi + (mi_row * cm->mi_stride + mi_col); return mi[0].mbmi.tx_size == bsize_to_tx_size(bsize) && mi[0].mbmi.sb_type < bsize; } #endif // CONFIG_SUPERTX void vp9_entropy_mode_init() { vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree); vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree); vp9_tokens_from_tree(partition_encodings, vp9_partition_tree); #if CONFIG_EXT_PARTITION vp9_tokens_from_tree(ext_partition_encodings, vp9_ext_partition_tree); #endif vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree); #if CONFIG_SR_MODE && SR_USE_MULTI_F vp9_tokens_from_tree(sr_usfilter_encodings, vp9_sr_usfilter_tree); #endif // CONFIG_SR_MODE && SR_USE_MULTI_F #if CONFIG_EXT_TX vp9_tokens_from_tree(ext_tx_encodings, vp9_ext_tx_tree); #if CONFIG_WAVELETS vp9_tokens_from_tree(ext_tx_large_encodings, vp9_ext_tx_large_tree); #endif #endif // CONFIG_EXT_TX #if CONFIG_PALETTE vp9_tokens_from_tree(palette_size_encodings, vp9_palette_size_tree); vp9_tokens_from_tree(palette_color_encodings, vp9_palette_color_tree); #endif // CONFIG_PALETTE #if CONFIG_NEW_INTER vp9_tokens_from_tree(inter_compound_mode_encodings, vp9_inter_compound_mode_tree); #endif // CONFIG_NEW_INTER #if CONFIG_COPY_MODE vp9_tokens_from_tree(copy_mode_encodings_l2, vp9_copy_mode_tree_l2); vp9_tokens_from_tree(copy_mode_encodings, vp9_copy_mode_tree); #endif // CONFIG_COPY_MODE #if CONFIG_GLOBAL_MOTION vp9_tokens_from_tree(global_motion_types_encodings, vp9_global_motion_types_tree); #endif // CONFIG_GLOBAL_MOTION #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES vp9_tokens_from_tree(dq_profile_encodings, vp9_dq_profile_tree); #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES } static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode, const vp9_prob *probs) { #if CONFIG_INTRABC assert(!is_intrabc_mode(mode)); #endif // CONFIG_INTRABC vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); } static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode, const vp9_prob *probs) { assert(is_inter_mode(mode)); vp9_write_token(w, vp9_inter_mode_tree, probs, &inter_mode_encodings[INTER_OFFSET(mode)]); } #if CONFIG_COPY_MODE static void write_copy_mode(VP9_COMMON *cm, vp9_writer *w, COPY_MODE mode, int inter_ref_count, int copy_mode_context) { if (inter_ref_count == 2) { vp9_write_token(w, vp9_copy_mode_tree_l2, cm->fc.copy_mode_probs_l2[copy_mode_context], ©_mode_encodings_l2[mode - REF0]); } else if (inter_ref_count > 2) { vp9_write_token(w, vp9_copy_mode_tree, cm->fc.copy_mode_probs[copy_mode_context], ©_mode_encodings[mode - REF0]); } } #endif // CONFIG_COPY_MODE #if CONFIG_NEW_INTER static void write_inter_compound_mode(vp9_writer *w, PREDICTION_MODE mode, const vp9_prob *probs) { assert(is_inter_compound_mode(mode)); vp9_write_token(w, vp9_inter_compound_mode_tree, probs, &inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]); } #endif // CONFIG_NEW_INTER static void encode_unsigned_max(struct vp9_write_bit_buffer *wb, int data, int max) { vp9_wb_write_literal(wb, data, get_unsigned_bits(max)); } static void prob_diff_update(const vp9_tree_index *tree, vp9_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n, vp9_writer *w) { int i; unsigned int branch_ct[32][2]; // Assuming max number of probabilities <= 32 assert(n <= 32); vp9_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); } static int prob_diff_update_savings(const vp9_tree_index *tree, vp9_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n) { int i; unsigned int branch_ct[32][2]; int savings = 0; // Assuming max number of probabilities <= 32 assert(n <= 32); vp9_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) { savings += vp9_cond_prob_diff_update_savings(&probs[i], branch_ct[i]); } return savings; } static void write_selected_tx_size(const VP9_COMMON *cm, const MACROBLOCKD *xd, TX_SIZE tx_size, BLOCK_SIZE bsize, vp9_writer *w) { const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc.tx_probs); vp9_write(w, tx_size != TX_4X4, tx_probs[0]); if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { vp9_write(w, tx_size != TX_8X8, tx_probs[1]); if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) { vp9_write(w, tx_size != TX_16X16, tx_probs[2]); #if CONFIG_TX64X64 if (tx_size != TX_16X16 && max_tx_size >= TX_64X64) vp9_write(w, tx_size != TX_32X32, tx_probs[3]); #endif } } } #if CONFIG_MISC_ENTROPY static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, const MODE_INFO *mi, int is_inter, vp9_writer *w) { #else static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, const MODE_INFO *mi, vp9_writer *w) { #endif if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; #if CONFIG_MISC_ENTROPY } else if (!is_inter && cm->frame_type == INTER_FRAME) { return 0; #endif } else { const int skip = mi->mbmi.skip; vp9_write(w, skip, vp9_get_skip_prob(cm, xd)); return skip; } } static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) { int k; for (k = 0; k < SKIP_CONTEXTS; ++k) vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]); } #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES static void write_dq_profile(const VP9_COMMON *cm, int dq_profile, vp9_writer *w) { vp9_write_token(w, vp9_dq_profile_tree, cm->fc.dq_profile_prob, &dq_profile_encodings[dq_profile]); } static void update_dq_profile_probs(VP9_COMMON *cm, vp9_writer *w) { prob_diff_update(vp9_dq_profile_tree, cm->fc.dq_profile_prob, cm->counts.dq_profile, QUANT_PROFILES, w); } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES #if CONFIG_SR_MODE #if SR_USE_MULTI_F static int write_sr_usfilter(const VP9_COMMON *cm, const MACROBLOCKD *xd, const MODE_INFO *mi, vp9_writer *w) { const int f_idx = mi->mbmi.us_filter_idx; assert(f_idx >= 0 && f_idx < SR_USFILTER_NUM); vp9_write_token(w, vp9_sr_usfilter_tree, vp9_get_sr_usfilter_prob(cm, xd), &sr_usfilter_encodings[f_idx]); return f_idx; } #endif // SR_USE_MULTI_F static int write_sr(const VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, const MODE_INFO *mi, vp9_writer *w) { if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) return 1; else if (is_enable_srmode(mi->mbmi.sb_type)) { const int sr = mi->mbmi.sr; vp9_write(w, sr, vp9_get_sr_prob(cm, xd, mi->mbmi.sb_type)); #if SR_USE_MULTI_F if (sr) { write_sr_usfilter(cm, xd, mi, w); } #endif // SR_USE_MULTI_F return sr; } else { assert(!mi->mbmi.sr); return 0; } } static void update_sr_probs(VP9_COMMON *cm, vp9_writer *w) { int k; for (k = 0; k < SR_CONTEXTS; ++k) vp9_cond_prob_diff_update(w, &cm->fc.sr_probs[k], cm->counts.sr[k]); } #if SR_USE_MULTI_F static void update_sr_usfilter_probs(VP9_COMMON *cm, vp9_writer *w) { int i; for (i = 0; i < SR_USFILTER_CONTEXTS; ++i) { prob_diff_update(vp9_sr_usfilter_tree, cm->fc.sr_usfilter_probs[i], cm->counts.sr_usfilters[i], SR_USFILTER_NUM, w); } } #endif // SR_USE_MULTI_F #endif // CONFIG_SR_MODE static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) { int j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) prob_diff_update(vp9_switchable_interp_tree, cm->fc.switchable_interp_prob[j], cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w); } #if CONFIG_EXT_TX static void update_ext_tx_probs(VP9_COMMON *cm, vp9_writer *w) { const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) - vp9_cost_zero(GROUP_DIFF_UPDATE_PROB); int i; int savings = 0; int do_update = 0; for (i = TX_4X4; i <= TX_16X16; ++i) { savings += prob_diff_update_savings(vp9_ext_tx_tree, cm->fc.ext_tx_prob[i], cm->counts.ext_tx[i], EXT_TX_TYPES); } #if CONFIG_WAVELETS for (; i < TX_SIZES; ++i) { savings += prob_diff_update_savings( vp9_ext_tx_large_tree, cm->fc.ext_tx_prob[i], cm->counts.ext_tx[i], EXT_TX_TYPES_LARGE); } #endif do_update = savings > savings_thresh; vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = TX_4X4; i <= TX_16X16; ++i) { prob_diff_update(vp9_ext_tx_tree, cm->fc.ext_tx_prob[i], cm->counts.ext_tx[i], EXT_TX_TYPES, w); } #if CONFIG_WAVELETS for (; i < TX_SIZES; ++i) { prob_diff_update(vp9_ext_tx_large_tree, cm->fc.ext_tx_prob[i], cm->counts.ext_tx[i], EXT_TX_TYPES_LARGE, w); } #endif // CONFIG_WAVELETS } } #endif // CONFIG_EXT_TX #if CONFIG_SUPERTX static void update_supertx_probs(VP9_COMMON *cm, vp9_writer *w) { const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) - vp9_cost_zero(GROUP_DIFF_UPDATE_PROB); int i, j; int savings = 0; int do_update = 0; for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { savings += vp9_cond_prob_diff_update_savings(&cm->fc.supertx_prob[i][j], cm->counts.supertx[i][j]); } } do_update = savings > savings_thresh; vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { vp9_cond_prob_diff_update(w, &cm->fc.supertx_prob[i][j], cm->counts.supertx[i][j]); } } } } #endif // CONFIG_SUPERTX #if CONFIG_NEW_INTER static void update_inter_compound_mode_probs(VP9_COMMON *cm, vp9_writer *w) { const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) - vp9_cost_zero(GROUP_DIFF_UPDATE_PROB); int i; int savings = 0; int do_update = 0; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { savings += prob_diff_update_savings(vp9_inter_compound_mode_tree, cm->fc.inter_compound_mode_probs[i], cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES); } do_update = savings > savings_thresh; vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { prob_diff_update(vp9_inter_compound_mode_tree, cm->fc.inter_compound_mode_probs[i], cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, w); } } } #endif // CONFIG_NEW_INTER static void pack_mb_tokens(vp9_writer *w, TOKENEXTRA **tp, const TOKENEXTRA *const stop, vpx_bit_depth_t bit_depth) { TOKENEXTRA *p = *tp; while (p < stop && p->token != EOSB_TOKEN) { const int t = p->token; const struct vp9_token *const a = &vp9_coef_encodings[t]; int i = 0; int v = a->value; int n = a->len; #if CONFIG_VP9_HIGHBITDEPTH const vp9_extra_bit *b; if (bit_depth == VPX_BITS_12) b = &vp9_extra_bits_high12[t]; else if (bit_depth == VPX_BITS_10) b = &vp9_extra_bits_high10[t]; else b = &vp9_extra_bits[t]; #else const vp9_extra_bit *const b = &vp9_extra_bits[t]; (void) bit_depth; #endif // CONFIG_VP9_HIGHBITDEPTH /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; } // TODO(jbb): expanding this can lead to big gains. It allows // much better branch prediction and would enable us to avoid numerous // lookups and compares. // If we have a token that's in the constrained set, the coefficient tree // is split into two treed writes. The first treed write takes care of the // unconstrained nodes. The second treed write takes care of the // constrained nodes. #if CONFIG_TX_SKIP if (p->is_pxd_token && FOR_SCREEN_CONTENT) { vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i); } else { #endif // CONFIG_TX_SKIP if (t >= TWO_TOKEN && t < EOB_TOKEN) { int len = UNCONSTRAINED_NODES - p->skip_eob_node; int bits = v >> (n - len); vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i); vp9_write_tree(w, vp9_coef_con_tree, vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1], v, n - len, 0); } else { vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i); } #if CONFIG_TX_SKIP } #endif // CONFIG_TX_SKIP if (b->base_val) { const int e = p->extra, l = b->len; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; vp9_write(w, bb, pb[i >> 1]); i = b->tree[i + bb]; } while (n); } vp9_write_bit(w, e & 1); } ++p; } *tp = p + (p->token == EOSB_TOKEN); } static void write_segment_id(vp9_writer *w, const struct segmentation *seg, int segment_id) { if (seg->enabled && seg->update_map) vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); } // This function encodes the reference frame static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd, vp9_writer *w) { const MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi; const int is_compound = has_second_ref(mbmi); const int segment_id = mbmi->segment_id; // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { assert(!is_compound); assert(mbmi->ref_frame[0] == vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); } else { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cm->reference_mode == REFERENCE_MODE_SELECT) { vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); } else { assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE)); } if (is_compound) { #if CONFIG_MULTI_REF const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[0] == LAST4_FRAME); #else const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME; #endif // CONFIG_MULTI_REF vp9_write(w, bit, vp9_get_pred_prob_comp_ref_p(cm, xd)); #if CONFIG_MULTI_REF if (!bit) { const int bit1 = mbmi->ref_frame[0] == LAST_FRAME; vp9_write(w, bit1, vp9_get_pred_prob_comp_ref_p1(cm, xd)); } else { const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; vp9_write(w, bit2, vp9_get_pred_prob_comp_ref_p2(cm, xd)); if (!bit2) { const int bit3 = mbmi->ref_frame[0] == LAST3_FRAME; vp9_write(w, bit3, vp9_get_pred_prob_comp_ref_p3(cm, xd)); } } #endif // CONFIG_MULTI_REF } else { #if CONFIG_MULTI_REF const int bit0 = (mbmi->ref_frame[0] == GOLDEN_FRAME || mbmi->ref_frame[0] == ALTREF_FRAME); vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); if (bit0) { const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME; vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); } else { const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[0] == LAST4_FRAME); vp9_write(w, bit2, vp9_get_pred_prob_single_ref_p3(cm, xd)); if (!bit2) { const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; vp9_write(w, bit3, vp9_get_pred_prob_single_ref_p4(cm, xd)); } else { const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; vp9_write(w, bit4, vp9_get_pred_prob_single_ref_p5(cm, xd)); } } #else // CONFIG_MULTI_REF const int bit0 = mbmi->ref_frame[0] != LAST_FRAME; vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); if (bit0) { const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME; vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); } #endif // CONFIG_MULTI_REF } } } static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi, #if CONFIG_SUPERTX int supertx_enabled, #endif vp9_writer *w) { VP9_COMMON *const cm = &cpi->common; const nmv_context *nmvc = &cm->fc.nmvc; const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; const struct segmentation *const seg = &cm->seg; const MB_MODE_INFO *const mbmi = &mi->mbmi; const PREDICTION_MODE mode = mbmi->mode; const int segment_id = mbmi->segment_id; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; const int is_inter = is_inter_block(mbmi); const int is_compound = has_second_ref(mbmi); int skip, ref; #if CONFIG_COPY_MODE int copy_mode_context = vp9_get_copy_mode_context(xd); if (bsize >= BLOCK_8X8 && mbmi->inter_ref_count > 0) { vp9_write(w, mbmi->copy_mode != NOREF, cm->fc.copy_noref_prob[copy_mode_context][bsize]); if (mbmi->copy_mode != NOREF) write_copy_mode(cm, w, mbmi->copy_mode, mbmi->inter_ref_count, copy_mode_context); } #endif if (seg->update_map) { if (seg->temporal_update) { const int pred_flag = mbmi->seg_id_predicted; vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); vp9_write(w, pred_flag, pred_prob); if (!pred_flag) write_segment_id(w, seg, segment_id); } else { write_segment_id(w, seg, segment_id); } } #if !CONFIG_MISC_ENTROPY #if CONFIG_SUPERTX if (supertx_enabled) skip = mbmi->skip; else skip = write_skip(cm, xd, segment_id, mi, w); #else skip = write_skip(cm, xd, segment_id, mi, w); #endif // CONFIG_SUPERTX #endif #if CONFIG_SUPERTX if (!supertx_enabled) { #endif #if CONFIG_COPY_MODE if (mbmi->copy_mode == NOREF) #endif if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); #if CONFIG_MISC_ENTROPY skip = write_skip(cm, xd, segment_id, mi, is_inter, w); #endif #if CONFIG_SUPERTX } else { skip = mbmi->skip; } #endif #if CONFIG_PALETTE if (!is_inter && bsize >= BLOCK_8X8 && cm->allow_palette_mode) { int n, i, j, k, rows, cols, palette_ctx, color_ctx; int color_new_idx = -1, color_order[PALETTE_MAX_SIZE]; uint8_t buffer[CODING_UNIT_SIZE * CODING_UNIT_SIZE]; const MODE_INFO *above_mi = xd->up_available ? xd->mi[-xd->mi_stride].src_mi : NULL; const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1].src_mi : NULL; palette_ctx = 0; if (above_mi) palette_ctx += (above_mi->mbmi.palette_enabled[0] == 1); if (left_mi) palette_ctx += (left_mi->mbmi.palette_enabled[0] == 1); vp9_write(w, mbmi->palette_enabled[0], cm->fc.palette_enabled_prob[bsize - BLOCK_8X8][palette_ctx]); vp9_write(w, mbmi->palette_enabled[1], cm->fc.palette_uv_enabled_prob[mbmi->palette_enabled[0]]); if (mbmi->palette_enabled[0]) { rows = 4 * num_4x4_blocks_high_lookup[bsize]; cols = 4 * num_4x4_blocks_wide_lookup[bsize]; n = mbmi->palette_size[0]; vp9_write_token(w, vp9_palette_size_tree, cm->fc.palette_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[n - 2]); for (i = 0; i < n; i++) vp9_write_literal(w, mbmi->palette_colors[i], cm->bit_depth); memcpy(buffer, mbmi->palette_color_map, rows * cols * sizeof(buffer[0])); vp9_write_literal(w, buffer[0], vp9_ceil_log2(n)); for (i = 0; i < rows; i++) { for (j = (i == 0 ? 1 : 0); j < cols; j++) { color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n, color_order); for (k = 0; k < n; k++) if (buffer[i * cols + j] == color_order[k]) { color_new_idx = k; break; } vp9_write_token(w, vp9_palette_color_tree, cm->fc.palette_color_prob[n - 2][color_ctx], &palette_color_encodings[color_new_idx]); } } } if (mbmi->palette_enabled[1]) { rows = 4 * num_4x4_blocks_high_lookup[bsize] >> xd->plane[1].subsampling_y; cols = 4 * num_4x4_blocks_wide_lookup[bsize] >> xd->plane[1].subsampling_x; n = mbmi->palette_size[1]; if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) { vp9_write_token(w, vp9_palette_size_tree, cm->fc.palette_uv_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[n - 2]); } for (i = 0; i < n; i++) vp9_write_literal(w, mbmi->palette_colors[PALETTE_MAX_SIZE + i], cm->bit_depth); for (i = 0; i < n; i++) vp9_write_literal(w, mbmi->palette_colors[2 * PALETTE_MAX_SIZE + i], cm->bit_depth); if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) { memcpy(buffer, mbmi->palette_uv_color_map, rows * cols * sizeof(buffer[0])); vp9_write_literal(w, buffer[0], vp9_ceil_log2(n)); for (i = 0; i < rows; i++) { for (j = (i == 0 ? 1 : 0); j < cols; j++) { color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n, color_order); for (k = 0; k < n; k++) if (buffer[i * cols + j] == color_order[k]) { color_new_idx = k; break; } vp9_write_token(w, vp9_palette_color_tree, cm->fc.palette_uv_color_prob[n - 2][color_ctx], &palette_color_encodings[color_new_idx]); } } } } } #endif #if CONFIG_SR_MODE if (!(is_inter && skip)) { write_sr(cm, xd, segment_id, mi, w); } if (mbmi->sr && !mbmi->skip) { assert(mbmi->tx_size == max_txsize_lookup[bsize]); } #endif // CONFIG_SR_MODE if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX #if CONFIG_PALETTE !mbmi->palette_enabled[0] && #endif // CONFIG_PALETTE #if CONFIG_SR_MODE !mi->mbmi.sr && #endif // CONFIG_SR_MODE !(is_inter && (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) { write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w); } #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (cm->base_qindex > Q_THRESHOLD_MIN && cm->base_qindex < Q_THRESHOLD_MAX && mbmi->send_dq_bit && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !mbmi->skip && !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { #if CONFIG_COPY_MODE if (mbmi->copy_mode == NOREF) #endif // CONFIG_COPY_MODE write_dq_profile(cm, mbmi->dq_off_index, w); } else { assert(mbmi->dq_off_index == 0); } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES #if CONFIG_EXT_TX if (is_inter && #if !CONFIG_WAVELETS mbmi->tx_size <= TX_16X16 && #endif cm->base_qindex > 0 && bsize >= BLOCK_8X8 && #if CONFIG_SUPERTX !supertx_enabled && #endif !mbmi->skip && !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { #if CONFIG_WAVELETS vp9_write_token(w, GET_EXT_TX_TREE(mbmi->tx_size), cm->fc.ext_tx_prob[mbmi->tx_size], &((GET_EXT_TX_ENCODINGS(mbmi->tx_size))[mbmi->ext_txfrm])); #else vp9_write_token(w, vp9_ext_tx_tree, cm->fc.ext_tx_prob[mbmi->tx_size], &ext_tx_encodings[mbmi->ext_txfrm]); #endif // CONFIG_WAVELETS } #endif // CONFIG_EXT_TX #if CONFIG_TX_SKIP if (bsize >= BLOCK_8X8) { int q_idx = vp9_get_qindex(seg, segment_id, cm->base_qindex); int try_tx_skip = is_inter ? q_idx <= tx_skip_q_thresh_inter : q_idx <= tx_skip_q_thresh_intra; #if CONFIG_COPY_MODE if (mbmi->copy_mode != NOREF) { try_tx_skip = 0; } #endif // CONFIG_COPY_MODE #if CONFIG_SUPERTX if (try_tx_skip && !supertx_enabled) { #else if (try_tx_skip && (!skip || !is_inter)) { #endif // CONFIG_SUPERTX if (xd->lossless) { #if CONFIG_SUPERTX if (1) #else if (mbmi->tx_size == TX_4X4) #endif // CONFIG_SUPERTX vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[is_inter]); #if CONFIG_SUPERTX if (1) #else if (get_uv_tx_size(mbmi, &xd->plane[1]) == TX_4X4) #endif // CONFIG_SUPERTX vp9_write(w, mbmi->tx_skip[1], cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]); } else { vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[is_inter]); vp9_write(w, mbmi->tx_skip[1], cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]); } } } #endif // CONFIG_TX_SKIP if (!is_inter) { if (bsize >= BLOCK_8X8) { #if CONFIG_PALETTE if (!mbmi->palette_enabled[0]) write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); #else write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); #endif // CONFIG_PALETTE #if CONFIG_FILTERINTRA if (is_filter_allowed(mode) && is_filter_enabled(mbmi->tx_size) #if CONFIG_PALETTE && !mbmi->palette_enabled[0] #endif // CONFIG_PALETTE ) { vp9_write(w, mbmi->filterbit, cm->fc.filterintra_prob[mbmi->tx_size][mode]); } #endif // CONFIG_FILTERINTRA } else { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]); #if CONFIG_FILTERINTRA if (is_filter_allowed(b_mode)) { vp9_write(w, mi->b_filter_info[idy * 2 + idx], cm->fc.filterintra_prob[0][b_mode]); } #endif // CONFIG_FILTERINTRA } } } #if CONFIG_PALETTE if (!mbmi->palette_enabled[1]) #endif // CONFIG_PALETTE write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]); #if CONFIG_FILTERINTRA if (is_filter_allowed(mbmi->uv_mode) && is_filter_enabled(get_uv_tx_size(mbmi, &xd->plane[1])) #if CONFIG_PALETTE && !mbmi->palette_enabled[1] #endif // CONFIG_PALETTE ) { vp9_write(w, mbmi->uv_filterbit, cm->fc.filterintra_prob[get_uv_tx_size(mbmi, &xd->plane[1])][mbmi->uv_mode]); } #endif // CONFIG_FILTERINTRA #if CONFIG_COPY_MODE } else if (mbmi->copy_mode == NOREF) { #else } else { #endif // CONFIG_COPY_MODE const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]]; const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx]; #if CONFIG_NEW_INTER const vp9_prob *const inter_compound_probs = cm->fc.inter_compound_mode_probs[mode_ctx]; #endif // CONFIG_NEW_INTER write_ref_frames(cm, xd, w); // If segment skip is not enabled code the mode. if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (bsize >= BLOCK_8X8) { #if CONFIG_NEW_INTER if (is_inter_compound_mode(mode)) write_inter_compound_mode(w, mode, inter_compound_probs); else if (is_inter_mode(mode)) #endif // CONFIG_NEW_INTER write_inter_mode(w, mode, inter_probs); } } if (cm->interp_filter == SWITCHABLE) { const int ctx = vp9_get_pred_context_switchable_interp(xd); vp9_write_token(w, vp9_switchable_interp_tree, cm->fc.switchable_interp_prob[ctx], &switchable_interp_encodings[mbmi->interp_filter]); ++cpi->interp_filter_selected[0][mbmi->interp_filter]; } else { assert(mbmi->interp_filter == cm->interp_filter); } #if CONFIG_INTERINTRA if (cpi->common.reference_mode != COMPOUND_REFERENCE && is_interintra_allowed(bsize) && is_inter_mode(mode) && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX mbmi->ref_frame[1] <= INTRA_FRAME) { vp9_write(w, mbmi->ref_frame[1] == INTRA_FRAME, cm->fc.interintra_prob[bsize]); if (mbmi->ref_frame[1] == INTRA_FRAME) { write_intra_mode(w, mbmi->interintra_mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); #if CONFIG_WEDGE_PARTITION if (get_wedge_bits(bsize)) { vp9_write(w, mbmi->use_wedge_interintra, cm->fc.wedge_interintra_prob[bsize]); if (mbmi->use_wedge_interintra) { vp9_write_literal(w, mbmi->interintra_wedge_index, get_wedge_bits(bsize)); } } #endif // CONFIG_WEDGE_PARTITION } } #endif // CONFIG_INTERINTRA if (bsize < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; #if CONFIG_NEW_INTER if (is_inter_compound_mode(b_mode)) write_inter_compound_mode(w, b_mode, inter_compound_probs); else if (is_inter_mode(b_mode)) #endif // CONFIG_NEW_INTER write_inter_mode(w, b_mode, inter_probs); #if CONFIG_NEW_INTER if (b_mode == NEWMV || b_mode == NEW2MV || b_mode == NEW_NEWMV) { #else if (b_mode == NEWMV) { #endif // CONFIG_NEW_INTER for (ref = 0; ref < 1 + is_compound; ++ref) { vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, #if CONFIG_NEW_INTER &mi->bmi[j].ref_mv[ref].as_mv, #else &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, #endif // CONFIG_NEW_INTER nmvc, allow_hp); } } #if CONFIG_NEW_INTER else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) { vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv, &mi->bmi[j].ref_mv[1].as_mv, nmvc, allow_hp); } else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) { vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv, &mi->bmi[j].ref_mv[0].as_mv, nmvc, allow_hp); } #endif // CONFIG_NEW_INTER } } } else { #if CONFIG_NEW_INTER if (mode == NEWMV || mode == NEW2MV || mode == NEW_NEWMV) { #else if (mode == NEWMV) { #endif // CONFIG_NEW_INTER for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_NEW_INTER if (mode == NEW2MV) vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &mbmi->ref_mvs[mbmi->ref_frame[ref]][1].as_mv, nmvc, allow_hp); else #endif // CONFIG_NEW_INTER vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc, allow_hp); } } #if CONFIG_NEW_INTER else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { vp9_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &mbmi->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc, allow_hp); } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { vp9_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &mbmi->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc, allow_hp); } #endif // CONFIG_NEW_INTER } #if CONFIG_WEDGE_PARTITION if (cm->reference_mode != SINGLE_REFERENCE && #if CONFIG_NEW_INTER is_inter_compound_mode(mode) && #endif // CONFIG_NEW_INTER get_wedge_bits(bsize) && mbmi->ref_frame[1] > INTRA_FRAME) { vp9_write(w, mbmi->use_wedge_interinter, cm->fc.wedge_interinter_prob[bsize]); if (mbmi->use_wedge_interinter) vp9_write_literal(w, mbmi->interinter_wedge_index, get_wedge_bits(bsize)); } #endif // CONFIG_NEW_INTER } } static void write_mb_modes_kf(const VP9_COMMON *cm, #if CONFIG_PALETTE MACROBLOCKD *xd, #else const MACROBLOCKD *xd, #endif // CONFIG_PALETTE MODE_INFO *mi_8x8, vp9_writer *w) { const struct segmentation *const seg = &cm->seg; const MODE_INFO *const mi = mi_8x8; const MODE_INFO *const above_mi = xd->up_available ? mi_8x8[-xd->mi_stride].src_mi : NULL; const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1].src_mi : NULL; const MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; #if CONFIG_INTRABC const nmv_context *ndvc = &cm->fc.ndvc; #endif // CONFIG_INTRABC if (seg->update_map) write_segment_id(w, seg, mbmi->segment_id); #if !CONFIG_MISC_ENTROPY write_skip(cm, xd, mbmi->segment_id, mi, w); #endif #if CONFIG_INTRABC if (bsize >= BLOCK_8X8 && cm->allow_intrabc_mode) { vp9_write(w, is_intrabc_mode(mbmi->mode), INTRABC_PROB); } #endif // CONFIG_INTRABC #if CONFIG_PALETTE if (bsize >= BLOCK_8X8 && cm->allow_palette_mode #if CONFIG_INTRABC && !is_intrabc_mode(mbmi->mode) #endif // CONFIG_INTRABC ) { int n, m1, m2, i, j, k, rows, cols, palette_ctx, color_ctx; int color_new_idx = -1, color_order[PALETTE_MAX_SIZE]; uint8_t buffer[CODING_UNIT_SIZE * CODING_UNIT_SIZE]; palette_ctx = 0; if (above_mi) palette_ctx += (above_mi->mbmi.palette_enabled[0] == 1); if (left_mi) palette_ctx += (left_mi->mbmi.palette_enabled[0] == 1); vp9_write(w, mbmi->palette_enabled[0], cm->fc.palette_enabled_prob[bsize - BLOCK_8X8][palette_ctx]); vp9_write(w, mbmi->palette_enabled[1], cm->fc.palette_uv_enabled_prob[mbmi->palette_enabled[0]]); if (mbmi->palette_enabled[0]) { rows = 4 * num_4x4_blocks_high_lookup[bsize]; cols = 4 * num_4x4_blocks_wide_lookup[bsize]; n = mbmi->palette_size[0]; m1 = mbmi->palette_indexed_size; m2 = mbmi->palette_literal_size; vp9_write_token(w, vp9_palette_size_tree, cm->fc.palette_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[mbmi->palette_size[0] - 2]); if ((xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) || !mbmi->palette_enabled[1]) vp9_encode_uniform(w, MIN(mbmi->palette_size[0] + 1, 8), mbmi->palette_indexed_size); if (PALETTE_DELTA_BIT) vp9_write_literal(w, mbmi->palette_delta_bitdepth, PALETTE_DELTA_BIT); if (m1 > 0) { for (i = 0; i < m1; i++) vp9_write_literal(w, mbmi->palette_indexed_colors[i], vp9_ceil_log2(mbmi->current_palette_size)); if (mbmi->palette_delta_bitdepth > 0) { for (i = 0; i < m1; i++) { vp9_write_bit(w, mbmi->palette_color_delta[i] < 0); vp9_write_literal(w, abs(mbmi->palette_color_delta[i]), mbmi->palette_delta_bitdepth); } } } if (m2 > 0) { for (i = 0; i < m2; i++) vp9_write_literal(w, mbmi->palette_literal_colors[i], cm->bit_depth); } memcpy(buffer, mbmi->palette_color_map, rows * cols * sizeof(buffer[0])); vp9_write_literal(w, buffer[0], vp9_ceil_log2(n)); for (i = 0; i < rows; i++) { for (j = (i == 0 ? 1 : 0); j < cols; j++) { color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n, color_order); for (k = 0; k < n; k++) if (buffer[i * cols + j] == color_order[k]) { color_new_idx = k; break; } vp9_write_token(w, vp9_palette_color_tree, cm->fc.palette_color_prob[n - 2][color_ctx], &palette_color_encodings[color_new_idx]); } } } if (mbmi->palette_enabled[1]) { rows = 4 * num_4x4_blocks_high_lookup[bsize] >> xd->plane[1].subsampling_y; cols = 4 * num_4x4_blocks_wide_lookup[bsize] >> xd->plane[1].subsampling_x; n = mbmi->palette_size[1]; if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) { vp9_write_token(w, vp9_palette_size_tree, cm->fc.palette_uv_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[n - 2]); } for (i = 0; i < n; i++) vp9_write_literal(w, mbmi->palette_colors[PALETTE_MAX_SIZE + i], cm->bit_depth); for (i = 0; i < n; i++) vp9_write_literal(w, mbmi->palette_colors[2 * PALETTE_MAX_SIZE + i], cm->bit_depth); if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) { memcpy(buffer, mbmi->palette_uv_color_map, rows * cols * sizeof(buffer[0])); vp9_write_literal(w, buffer[0], vp9_ceil_log2(n)); for (i = 0; i < rows; i++) { for (j = (i == 0 ? 1 : 0); j < cols; j++) { color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n, color_order); for (k = 0; k < n; k++) if (buffer[i * cols + j] == color_order[k]) { color_new_idx = k; break; } vp9_write_token(w, vp9_palette_color_tree, cm->fc.palette_uv_color_prob[n - 2][color_ctx], &palette_color_encodings[color_new_idx]); } } } } } #endif #if CONFIG_SR_MODE write_sr(cm, xd, mbmi->segment_id, mi, w); if (mbmi->sr && !mbmi->skip) { assert(mbmi->tx_size == max_txsize_lookup[bsize]); } #endif // CONFIG_SR_MODE if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT #if CONFIG_PALETTE && !mbmi->palette_enabled[0] #endif #if CONFIG_SR_MODE && !mi->mbmi.sr #endif // CONFIG_SR_MODE ) { write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w); } #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (cm->base_qindex > Q_THRESHOLD_MIN && cm->base_qindex < Q_THRESHOLD_MAX && mbmi->send_dq_bit && !mbmi->skip && !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { write_dq_profile(cm, mbmi->dq_off_index, w); } else { assert(mbmi->dq_off_index == 0); } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES #if CONFIG_TX_SKIP if (bsize >= BLOCK_8X8) { int q_idx = vp9_get_qindex(seg, mbmi->segment_id, cm->base_qindex); int try_tx_skip = q_idx <= tx_skip_q_thresh_intra; if (try_tx_skip) { if (xd->lossless) { if (mbmi->tx_size == TX_4X4) vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[0]); if (get_uv_tx_size(mbmi, &xd->plane[1]) == TX_4X4) vp9_write(w, mbmi->tx_skip[1], cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]); } else { vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[0]); vp9_write(w, mbmi->tx_skip[1], cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]); } } } #endif if (bsize >= BLOCK_8X8) { #if CONFIG_PALETTE if (!mbmi->palette_enabled[0]) #endif // CONFIG_PALETTE #if CONFIG_INTRABC if (!is_intrabc_mode(mbmi->mode)) #endif // CONFIG_INTRABC write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); #if CONFIG_FILTERINTRA if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size) #if CONFIG_PALETTE && !mbmi->palette_enabled[0] #endif // CONFIG_PALETTE ) vp9_write(w, mbmi->filterbit, cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]); #endif // CONFIG_FILTERINTRA #if CONFIG_INTRABC if (mbmi->mode == NEWDV) { int_mv dv_ref = mbmi->ref_mvs[INTRA_FRAME][0]; vp9_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, ndvc); } #endif // CONFIG_INTRABC } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int block = idy * 2 + idx; write_intra_mode(w, mi->bmi[block].as_mode, get_y_mode_probs(mi, above_mi, left_mi, block)); #if CONFIG_FILTERINTRA if (is_filter_allowed(mi->bmi[block].as_mode)) vp9_write(w, mi->b_filter_info[block], cm->fc.filterintra_prob[0][mi->bmi[block].as_mode]); #endif } } } #if CONFIG_PALETTE if (!mbmi->palette_enabled[1]) #endif // CONFIG_PALETTE #if CONFIG_INTRABC if (!is_intrabc_mode(mbmi->mode)) #endif // CONFIG_INTRABC write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]); #if CONFIG_FILTERINTRA if (is_filter_allowed(mbmi->uv_mode) && is_filter_enabled(get_uv_tx_size(mbmi, &xd->plane[1])) #if CONFIG_PALETTE && !mbmi->palette_enabled[1] #endif // CONFIG_PALETTE ) vp9_write(w, mbmi->uv_filterbit, cm->fc.filterintra_prob[get_uv_tx_size(mbmi, &xd->plane[1])][mbmi->uv_mode]); #endif // CONFIG_FILTERINTRA } static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile, vp9_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col) { const VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO *m; xd->mi = cm->mi + (mi_row * cm->mi_stride + mi_col); m = xd->mi; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type], mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type], cm->mi_rows, cm->mi_cols); if (frame_is_intra_only(cm)) { write_mb_modes_kf(cm, xd, xd->mi, w); } else { pack_inter_mode_mvs(cpi, m, #if CONFIG_SUPERTX supertx_enabled, #endif w); } #if CONFIG_SUPERTX if (!supertx_enabled) { #endif assert(*tok < tok_end); pack_mb_tokens(w, tok, tok_end, cm->bit_depth); #if CONFIG_SUPERTX } #endif } static void write_partition(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, int hbs, int mi_row, int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) { const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const vp9_prob *const probs = get_partition_probs(cm, ctx); const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (has_rows && has_cols) { #if CONFIG_EXT_PARTITION if (bsize <= BLOCK_8X8) vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); else vp9_write_token(w, vp9_ext_partition_tree, probs, &ext_partition_encodings[p]); #else vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); #endif } else if (!has_rows && has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); vp9_write(w, p == PARTITION_SPLIT, probs[1]); } else if (has_rows && !has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_VERT); vp9_write(w, p == PARTITION_SPLIT, probs[2]); } else { assert(p == PARTITION_SPLIT); } } static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile, vp9_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col, BLOCK_SIZE bsize) { const VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int bsl = b_width_log2_lookup[bsize]; const int bs = (1 << bsl) / 4; PARTITION_TYPE partition; BLOCK_SIZE subsize; MODE_INFO *m = NULL; #if CONFIG_SUPERTX const int pack_token = !supertx_enabled; #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; m = cm->mi[mi_row * cm->mi_stride + mi_col].src_mi; partition = partition_lookup[bsl][m->mbmi.sb_type]; #if CONFIG_EXT_PARTITION partition = get_partition(cm->mi, cm->mi_stride, cm->mi_rows, cm->mi_cols, mi_row, mi_col, bsize); #endif write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); subsize = get_subsize(bsize, partition); #if CONFIG_SUPERTX xd->mi = m; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); if (!supertx_enabled && cm->frame_type != KEY_FRAME && partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && !xd->lossless) { TX_SIZE supertx_size = bsize_to_tx_size(bsize); vp9_prob prob = cm->fc.supertx_prob[partition_supertx_context_lookup[partition]] [supertx_size]; supertx_enabled = (xd->mi[0].mbmi.tx_size == supertx_size); vp9_write(w, supertx_enabled, prob); if (supertx_enabled) { vp9_write(w, xd->mi[0].mbmi.skip, vp9_get_skip_prob(cm, xd)); #if CONFIG_EXT_TX #if CONFIG_WAVELETS if (!xd->mi[0].mbmi.skip) vp9_write_token(w, GET_EXT_TX_TREE(supertx_size), cm->fc.ext_tx_prob[supertx_size], &GET_EXT_TX_ENCODINGS(supertx_size) [xd->mi[0].mbmi.ext_txfrm]); #else if (supertx_size <= TX_16X16 && !xd->mi[0].mbmi.skip) vp9_write_token(w, vp9_ext_tx_tree, cm->fc.ext_tx_prob[supertx_size], &ext_tx_encodings[xd->mi[0].mbmi.ext_txfrm]); #endif // CONFIG_WAVELETS #endif // CONFIG_EXT_TX #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (!xd->mi[0].mbmi.skip && cm->base_qindex > Q_THRESHOLD_MIN && cm->base_qindex < Q_THRESHOLD_MAX && xd->mi[0].mbmi.send_dq_bit && !vp9_segfeature_active( &cm->seg, xd->mi[0].mbmi.segment_id, SEG_LVL_SKIP)) { write_dq_profile(cm, xd->mi[0].mbmi.dq_off_index, w); } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES } } #endif // CONFIG_SUPERTX if (subsize < BLOCK_8X8) { write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); } else { switch (partition) { case PARTITION_NONE: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); break; case PARTITION_HORZ: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); if (mi_row + bs < cm->mi_rows) write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col); break; case PARTITION_VERT: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); if (mi_col + bs < cm->mi_cols) write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + bs); break; case PARTITION_SPLIT: write_modes_sb(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, subsize); write_modes_sb(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + bs, subsize); write_modes_sb(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col, subsize); write_modes_sb(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col + bs, subsize); break; #if CONFIG_EXT_PARTITION case PARTITION_HORZ_A: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + bs); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col); break; case PARTITION_HORZ_B: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col + bs); break; case PARTITION_VERT_A: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + bs); break; case PARTITION_VERT_B: write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + bs); write_modes_b(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + bs, mi_col + bs); break; #endif default: assert(0); } } #if CONFIG_SUPERTX if (partition != PARTITION_NONE && supertx_enabled && pack_token) { assert(*tok < tok_end); pack_mb_tokens(w, tok, tok_end, cm->bit_depth); } #endif // update partition context #if CONFIG_EXT_PARTITION update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif } static void write_modes(VP9_COMP *cpi, const TileInfo *const tile, vp9_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) { int mi_row, mi_col; #if CONFIG_ROW_TILE VP9_COMMON *cm = &cpi->common; vpx_memset(&cm->above_seg_context[tile->mi_col_start], 0, sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(tile->mi_col_end - tile->mi_col_start)); #endif for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp9_zero(cpi->mb.e_mbd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) write_modes_sb(cpi, tile, w, tok, tok_end, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, BLOCK_LARGEST); } } static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats *coef_branch_ct, vp9_coeff_probs_model *coef_probs) { vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size]; unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = cpi->common.counts.eob_branch[tx_size]; int i, j, k, l, m; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { vp9_tree_probs_from_distribution(vp9_coef_tree, coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l]); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; for (m = 0; m < UNCONSTRAINED_NODES; ++m) coef_probs[i][j][k][l][m] = get_binary_prob( coef_branch_ct[i][j][k][l][m][0], coef_branch_ct[i][j][k][l][m][1]); } } } } } static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats *frame_branch_ct, vp9_coeff_probs_model *new_coef_probs) { vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size]; const vp9_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = UNCONSTRAINED_NODES; int i, j, k, l, t; switch (cpi->sf.use_fast_coef_updates) { case TWO_LOOP: { /* dry run to see if there is any update at all needed */ int savings = 0; int update[2] = {0, 0}; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][k][l][t]; const vp9_prob oldp = old_coef_probs[i][j][k][l][t]; int s; int u = 0; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); return; } vp9_write_bit(bc, 1); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_coef_probs[i][j][k][l] + t; const vp9_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp9_write(bc, u, upd); if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } return; } case ONE_LOOP: case ONE_LOOP_REDUCED: { const int prev_coef_contexts_to_update = cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ? COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS; const int coef_band_to_update = cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ? COEF_BANDS >> 1 : COEF_BANDS; int updates = 0; int noupdates_before_first = 0; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_coef_probs[i][j][k][l] + t; int s; int u = 0; if (l >= prev_coef_contexts_to_update || k >= coef_band_to_update) { u = 0; } else { if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; } updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; continue; } if (u == 1 && updates == 1) { int v; // first update vp9_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vp9_write(bc, 0, upd); } vp9_write(bc, u, upd); if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } if (updates == 0) { vp9_write_bit(bc, 0); // no updates } return; } default: assert(0); } } #if CONFIG_TX_SKIP static void build_tree_distribution_pxd(VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats_pxd *coef_branch_ct, vp9_coeff_probs_pxd *coef_probs) { vp9_coeff_counts_pxd *coef_counts = cpi->common.counts.coef_pxd[tx_size]; unsigned int (*eob_branch_ct)[REF_TYPES][COEFF_CONTEXTS] = cpi->common.counts.eob_branch_pxd[tx_size]; int i, j, l, m; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (l = 0; l < COEFF_CONTEXTS; ++l) { vp9_tree_probs_from_distribution(vp9_coef_tree, coef_branch_ct[i][j][l], coef_counts[i][j][l]); coef_branch_ct[i][j][l][0][1] = eob_branch_ct[i][j][l] - coef_branch_ct[i][j][l][0][0]; for (m = 0; m < ENTROPY_NODES; ++m) coef_probs[i][j][l][m] = get_binary_prob( coef_branch_ct[i][j][l][m][0], coef_branch_ct[i][j][l][m][1]); } } } } static void update_coef_probs_common_pxd(vp9_writer* const bc, VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats_pxd *frame_branch_ct, vp9_coeff_probs_pxd *new_coef_probs) { vp9_coeff_probs_pxd *old_coef_probs = cpi->common.fc.coef_probs_pxd[tx_size]; const vp9_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = ENTROPY_NODES; int i, j, l, t; switch (cpi->sf.use_fast_coef_updates) { case TWO_LOOP: { /* dry run to see if there is any update at all needed */ int savings = 0; int update[2] = {0, 0}; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (l = 0; l < COEFF_CONTEXTS; ++l) { for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][l][t]; const vp9_prob oldp = old_coef_probs[i][j][l][t]; int s; int u = 0; s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); return; } vp9_write_bit(bc, 1); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (l = 0; l < COEFF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][l][t]; vp9_prob *oldp = old_coef_probs[i][j][l] + t; const vp9_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp9_write(bc, u, upd); if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } return; } case ONE_LOOP: case ONE_LOOP_REDUCED: { int updates = 0; int noupdates_before_first = 0; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (l = 0; l < COEFF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_coef_probs[i][j][l][t]; vp9_prob *oldp = old_coef_probs[i][j][l] + t; int s; int u = 0; s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; continue; } if (u == 1 && updates == 1) { int v; // first update vp9_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vp9_write(bc, 0, upd); } vp9_write(bc, u, upd); if (u) { // send/use new probability vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } if (updates == 0) { vp9_write_bit(bc, 0); // no updates } return; } default: assert(0); } } #endif // CONFIG_TX_SKIP static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) { const TX_MODE tx_mode = cpi->common.tx_mode; const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES]; vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES]; #if CONFIG_TX_SKIP vp9_coeff_stats_pxd frame_branch_ct_pxd[TX_SIZES][PLANE_TYPES]; vp9_coeff_probs_pxd frame_coef_probs_pxd[TX_SIZES][PLANE_TYPES]; #endif // CONFIG_TX_SKIP for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size], frame_coef_probs[tx_size]); for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size], frame_coef_probs[tx_size]); #if CONFIG_TX_SKIP if (FOR_SCREEN_CONTENT) { for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) build_tree_distribution_pxd(cpi, tx_size, frame_branch_ct_pxd[tx_size], frame_coef_probs_pxd[tx_size]); for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) update_coef_probs_common_pxd(w, cpi, tx_size, frame_branch_ct_pxd[tx_size], frame_coef_probs_pxd[tx_size]); } #endif // CONFIG_TX_SKIP } static void encode_loopfilter(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { int i; struct loopfilter *lf = &cm->lf; // Encode the loop filter level and type vp9_wb_write_literal(wb, lf->filter_level, 6); vp9_wb_write_literal(wb, lf->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled); if (lf->mode_ref_delta_enabled) { vp9_wb_write_bit(wb, lf->mode_ref_delta_update); if (lf->mode_ref_delta_update) { for (i = 0; i < MAX_REF_LF_DELTAS; i++) { const int delta = lf->ref_deltas[i]; const int changed = delta != lf->last_ref_deltas[i]; vp9_wb_write_bit(wb, changed); if (changed) { lf->last_ref_deltas[i] = delta; vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } } for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; const int changed = delta != lf->last_mode_deltas[i]; vp9_wb_write_bit(wb, changed); if (changed) { lf->last_mode_deltas[i] = delta; vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } } } } #if CONFIG_LOOP_POSTFILTER vp9_wb_write_bit(wb, lf->bilateral_level != lf->last_bilateral_level); if (lf->bilateral_level != lf->last_bilateral_level) { int level = lf->bilateral_level - (lf->bilateral_level > lf->last_bilateral_level); vp9_wb_write_literal(wb, level, vp9_bilateral_level_bits(cm)); } #endif // CONFIG_LOOP_POSTFILTER } static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { vp9_wb_write_bit(wb, 1); vp9_wb_write_literal(wb, abs(delta_q), 4); vp9_wb_write_bit(wb, delta_q < 0); } else { vp9_wb_write_bit(wb, 0); } } static void encode_quantization(const VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); write_delta_q(wb, cm->y_dc_delta_q); write_delta_q(wb, cm->uv_dc_delta_q); write_delta_q(wb, cm->uv_ac_delta_q); } static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, struct vp9_write_bit_buffer *wb) { int i, j; const struct segmentation *seg = &cm->seg; vp9_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Segmentation map vp9_wb_write_bit(wb, seg->update_map); if (seg->update_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cm, xd); // Write out probabilities used to decode unpredicted macro-block segments for (i = 0; i < SEG_TREE_PROBS; i++) { const int prob = seg->tree_probs[i]; const int update = prob != MAX_PROB; vp9_wb_write_bit(wb, update); if (update) vp9_wb_write_literal(wb, prob, 8); } // Write out the chosen coding method. vp9_wb_write_bit(wb, seg->temporal_update); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) { const int prob = seg->pred_probs[i]; const int update = prob != MAX_PROB; vp9_wb_write_bit(wb, update); if (update) vp9_wb_write_literal(wb, prob, 8); } } } // Segmentation data vp9_wb_write_bit(wb, seg->update_data); if (seg->update_data) { vp9_wb_write_bit(wb, seg->abs_delta); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int active = vp9_segfeature_active(seg, i, j); vp9_wb_write_bit(wb, active); if (active) { const int data = vp9_get_segdata(seg, i, j); const int data_max = vp9_seg_feature_data_max(j); if (vp9_is_segfeature_signed(j)) { encode_unsigned_max(wb, abs(data), data_max); vp9_wb_write_bit(wb, data < 0); } else { encode_unsigned_max(wb, data, data_max); } } } } } } static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) { // Mode #if CONFIG_TX64X64 if (cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32) { vp9_write_literal(w, 2, 2); vp9_write_bit(w, cm->tx_mode == ALLOW_32X32); } else if (cm->tx_mode == ALLOW_64X64 || cm->tx_mode == TX_MODE_SELECT) { vp9_write_literal(w, 3, 2); vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT); } else { vp9_write_literal(w, cm->tx_mode, 2); } #else vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2); if (cm->tx_mode >= ALLOW_32X32) vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT); #endif // CONFIG_TX64X64 // Probabilities if (cm->tx_mode == TX_MODE_SELECT) { int i, j; unsigned int ct_8x8p[1][2]; unsigned int ct_16x16p[2][2]; unsigned int ct_32x32p[3][2]; #if CONFIG_TX64X64 unsigned int ct_64x64p[4][2]; #endif for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p); for (j = 0; j < 1; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p); for (j = 0; j < 2; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j], ct_16x16p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p); for (j = 0; j < 3; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j], ct_32x32p[j]); } #if CONFIG_TX64X64 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_64x64(cm->counts.tx.p64x64[i], ct_64x64p); for (j = 0; j < 4; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p64x64[i][j], ct_64x64p[j]); } #endif // CONFIG_TX64X64 } } static void write_interp_filter(INTERP_FILTER filter, struct vp9_write_bit_buffer *wb) { #if CONFIG_BITSTREAM_FIXES vp9_wb_write_bit(wb, filter == SWITCHABLE); if (filter != SWITCHABLE) vp9_wb_write_literal(wb, filter, 2); #else const int filter_to_literal[] = { 1, 0, 2, 3 }; vp9_wb_write_bit(wb, filter == SWITCHABLE); if (filter != SWITCHABLE) vp9_wb_write_literal(wb, filter_to_literal[filter], 2); #endif } static void fix_interp_filter(VP9_COMMON *cm) { if (cm->interp_filter == SWITCHABLE) { // Check to see if only one of the filters is actually used int count[SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) count[i] += cm->counts.switchable_interp[j][i]; c += (count[i] > 0); } if (c == 1) { // Only one filter is used. So set the filter at frame level for (i = 0; i < SWITCHABLE_FILTERS; ++i) { if (count[i]) { cm->interp_filter = i; break; } } } } } #if CONFIG_ROW_TILE // Decide how many bytes used for storing tile column size and tile size based // on the tile dimensions or the information gathered in a previous bitstream // packing while recode is on. static INLINE void set_tile_size_in_bytes(VP9_COMP *cpi, int tile_width, int tile_height, int final_packing) { VP9_COMMON *const cm = &cpi->common; // Default number of bytes used is 4. cm->tile_size_bytes = 4; cm->tile_col_size_bytes = 4; if (!final_packing || (cpi->max_tile_size == UINT_MAX || cpi->max_tile_col_size == UINT_MAX)) { // Determine num of bytes by tile size. if (tile_width * tile_height <= 4) cm->tile_size_bytes = 2; if (!final_packing) { cpi->max_tile_size = 0; cpi->max_tile_col_size = 0; } } else { // When we have ideas on maximum tile size, use that to estimate the num of // bytes needed. Note: This decision is not always guaranteed to be true. // In later bitstream packing, need to check if the actual tile size is // out of the range. if (cpi->max_tile_size < ONE_BYTE_THRESH(0)) cm->tile_size_bytes = 1; else if (cpi->max_tile_size < TWO_BYTE_THRESH(0)) cm->tile_size_bytes = 2; else if (cpi->max_tile_size < THREE_BYTE_THRESH(0)) cm->tile_size_bytes = 3; if (cpi->max_tile_col_size < ONE_BYTE_THRESH(1)) cm->tile_col_size_bytes = 1; else if (cpi->max_tile_col_size < TWO_BYTE_THRESH(1)) cm->tile_col_size_bytes = 2; else if (cpi->max_tile_col_size < THREE_BYTE_THRESH(1)) cm->tile_col_size_bytes = 3; } } static void write_tile_info(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb, int final_packing) { VP9_COMMON *const cm = &cpi->common; int tile_width = mi_cols_aligned_to_sb(cm->tile_width) >> MI_BLOCK_SIZE_LOG2; int tile_height = mi_cols_aligned_to_sb(cm->tile_height) >> MI_BLOCK_SIZE_LOG2; vp9_wb_write_literal(wb, tile_width, 6); vp9_wb_write_literal(wb, tile_height, 6); set_tile_size_in_bytes(cpi, tile_width, tile_height, final_packing); assert(cm->tile_col_size_bytes > 0 && cm->tile_col_size_bytes <= 4); assert(cm->tile_size_bytes > 0 && cm->tile_size_bytes <= 4); // Write the num of bytes decision to bitstream vp9_wb_write_literal(wb, cm->tile_col_size_bytes - 1, 2); vp9_wb_write_literal(wb, cm->tile_size_bytes - 1, 2); } #else static void write_tile_info(VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) { int min_log2_tiles, max_log2_tiles, ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tiles, &max_log2_tiles); // columns ones = cm->log2_tile_cols - min_log2_tiles; while (ones--) vp9_wb_write_bit(wb, 1); if (cm->log2_tile_cols < max_log2_tiles) vp9_wb_write_bit(wb, 0); // rows vp9_wb_write_bit(wb, cm->log2_tile_rows != 0); if (cm->log2_tile_rows != 0) vp9_wb_write_bit(wb, cm->log2_tile_rows != 1); } #endif static int get_refresh_mask(VP9_COMP *cpi) { if (vp9_preserve_existing_gf(cpi)) { // We have decided to preserve the previously existing golden frame as our // new ARF frame. However, in the short term we leave it in the GF slot and, // if we're updating the GF with the current decoded frame, we save it // instead to the ARF slot. // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it // there so that it can be done outside of the recode loop. // Note: This is highly specific to the use of ARF as a forward reference, // and this needs to be generalized as other uses are implemented // (like RTC/temporal scalability). return (cpi->refresh_last_frame << cpi->lst_fb_idx) | #if CONFIG_MULTI_REF (cpi->refresh_last2_frame << cpi->lst2_fb_idx) | (cpi->refresh_last3_frame << cpi->lst3_fb_idx) | (cpi->refresh_last4_frame << cpi->lst4_fb_idx) | #endif // CONFIG_MULTI_REF (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { int arf_idx = cpi->alt_fb_idx; if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_idx = gf_group->arf_update_idx[gf_group->index]; } return (cpi->refresh_last_frame << cpi->lst_fb_idx) | #if CONFIG_MULTI_REF (cpi->refresh_last2_frame << cpi->lst2_fb_idx) | (cpi->refresh_last3_frame << cpi->lst3_fb_idx) | (cpi->refresh_last4_frame << cpi->lst4_fb_idx) | #endif // CONFIG_MULTI_REF (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << arf_idx); } } #if CONFIG_ROW_TILE static INLINE void setup_size_storing(int num_bytes, MemPut *output, unsigned int *size_limit, int type) { *output = mem_put_be32; *size_limit = UINT_MAX; if (num_bytes == 3) { *output = mem_put_be24; *size_limit = THREE_BYTE_LIMIT(type); } else if (num_bytes == 2) { *output = mem_put_be16; *size_limit = TWO_BYTE_LIMIT(type); } else if (num_bytes == 1) { *output = mem_put_be8; *size_limit = ONE_BYTE_LIMIT(type); } } #endif #if CONFIG_ROW_TILE static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr, int final_packing) { #else static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { #endif VP9_COMMON *const cm = &cpi->common; vp9_writer residual_bc; int tile_row, tile_col; #if CONFIG_ROW_TILE TOKENEXTRA *(*tok)[1024] = cpi->tile_tok; TileInfo (*tile)[1024] = cpi->tile_info; EncTileBuffer (*tile_buf)[1024] = cpi->tile_buffers; #else TOKENEXTRA *tok[4][1 << 6]; TileInfo tile[4][1 << 6]; #endif TOKENEXTRA *tok_end; size_t total_size = 0; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; TOKENEXTRA *pre_tok = cpi->tok; int tile_tok = 0; #if CONFIG_ROW_TILE MemPut output_tile_size; MemPut output_tile_col_size; unsigned int tile_size_limit; unsigned int tile_col_size_limit; setup_size_storing(cm->tile_size_bytes, &output_tile_size, &tile_size_limit, 0); setup_size_storing(cm->tile_col_size_bytes, &output_tile_col_size, &tile_col_size_limit, 1); #endif vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { vp9_tile_init(&tile[tile_row][tile_col], cm, tile_row, tile_col); tok[tile_row][tile_col] = pre_tok + tile_tok; pre_tok = tok[tile_row][tile_col]; tile_tok = allocated_tokens(tile[tile_row][tile_col]); } } #if CONFIG_ROW_TILE for (tile_col = 0; tile_col < tile_cols; tile_col++) { int is_last_col = (tile_col == tile_cols - 1); size_t col_offset = total_size; if (!is_last_col) total_size += cm->tile_col_size_bytes; for (tile_row = 0; tile_row < tile_rows; tile_row++) { TileInfo * const ptile = &tile[tile_row][tile_col]; EncTileBuffer *const ptile_buf = &tile_buf[tile_row][tile_col]; uint8_t *source; int write_tile_data = 1; tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col]; // Is CONFIG_ROW_TILE = 1, every tile in the row has a header even for // the last one. ptile_buf->data_start = data_ptr + total_size; source = data_ptr + total_size + cm->tile_size_bytes; vp9_start_encode(&residual_bc, source); write_modes(cpi, ptile, &residual_bc, &tok[tile_row][tile_col], tok_end); assert(tok[tile_row][tile_col] == tok_end); vp9_stop_encode(&residual_bc); // If it is not final packing, record the maximum tile size we see, // otherwise, check if the tile size is out of the range. if (!final_packing) { if (cpi->max_tile_size < residual_bc.pos) cpi->max_tile_size = residual_bc.pos; } else { if (residual_bc.pos > tile_size_limit) return 0; } ptile_buf->data_size = residual_bc.pos; // Check if this tile is a copy tile. // Very low chances to have copy tiles on the key frame. Thus, don't // search on key frame to reduce unnecessary search. if (cm->frame_type != KEY_FRAME && final_packing) { const MV32 candidates[1] = {{1, 0}}; int i; assert(cm->tile_size_bytes >= 1); // (TODO: yunqingwang) For now, only above tile is checked and used. // More candidates such as left tile can be added later. for (i = 0; i < 1; i++) { int cand_row = tile_row - candidates[0].row; int cand_col = tile_col - candidates[0].col; uint8_t tile_hdr; uint8_t *ref_tile; unsigned int ref_tile_size; int identical_tile_offset = 0; if (tile_row == 0 ) continue; tile_hdr = *(tile_buf[cand_row][cand_col].data_start); // Read out tcm bit if ((tile_hdr >> 7) == 1) { // The candidate is a copy tile itself tile_hdr &= 0x7f; identical_tile_offset = tile_hdr + 1; ref_tile = tile_buf[cand_row - tile_hdr][cand_col].data_start + cm->tile_size_bytes; ref_tile_size = tile_buf[cand_row - tile_hdr][cand_col].data_size; } else { identical_tile_offset = 1; ref_tile = tile_buf[cand_row][cand_col].data_start + cm->tile_size_bytes; ref_tile_size = tile_buf[cand_row][cand_col].data_size; } if (identical_tile_offset < 128 && ref_tile_size == residual_bc.pos) { unsigned int m; uint8_t *cur_tile = tile_buf[tile_row][tile_col].data_start + cm->tile_size_bytes; int match = 1; for (m = 0; m < residual_bc.pos; m++) { if (*ref_tile++ != *cur_tile++) { match = 0; break; } } if (match) { write_tile_data = 0; identical_tile_offset |= 0x80; identical_tile_offset <<= (cm->tile_size_bytes - 1) * 8; output_tile_size(data_ptr + total_size, identical_tile_offset); break; } } } } if (write_tile_data) { // size of this tile output_tile_size(data_ptr + total_size, residual_bc.pos); total_size += residual_bc.pos; } total_size += cm->tile_size_bytes; } if (!is_last_col) { size_t col_size = total_size - col_offset - cm->tile_col_size_bytes; output_tile_col_size(data_ptr + col_offset, col_size); // If it is not final packing, record the maximum tile column size we see, // otherwise, check if the tile size is out of the range. if (!final_packing) { if (cpi->max_tile_col_size < col_size) cpi->max_tile_col_size = col_size; } else { if (col_size > tile_col_size_limit) return 0; } } } #else for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { const TileInfo * const ptile = &tile[tile_row][tile_col]; tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col]; if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) vp9_start_encode(&residual_bc, data_ptr + total_size + 4); else vp9_start_encode(&residual_bc, data_ptr + total_size); write_modes(cpi, ptile, &residual_bc, &tok[tile_row][tile_col], tok_end); assert(tok[tile_row][tile_col] == tok_end); vp9_stop_encode(&residual_bc); if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { // size of this tile mem_put_be32(data_ptr + total_size, residual_bc.pos); total_size += 4; } total_size += residual_bc.pos; } } #endif return total_size; } static void write_display_size(const VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { const int scaling_active = cm->width != cm->display_width || cm->height != cm->display_height; vp9_wb_write_bit(wb, scaling_active); if (scaling_active) { vp9_wb_write_literal(wb, cm->display_width - 1, 16); vp9_wb_write_literal(wb, cm->display_height - 1, 16); } } static void write_frame_size(const VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, cm->width - 1, 16); vp9_wb_write_literal(wb, cm->height - 1, 16); write_display_size(cm, wb); } static void write_frame_size_with_refs(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; int found = 0; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); found = cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; vp9_wb_write_bit(wb, found); if (found) { break; } } if (!found) { vp9_wb_write_literal(wb, cm->width - 1, 16); vp9_wb_write_literal(wb, cm->height - 1, 16); } write_display_size(cm, wb); } static void write_sync_code(struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); } static void write_profile(BITSTREAM_PROFILE profile, struct vp9_write_bit_buffer *wb) { switch (profile) { case PROFILE_0: vp9_wb_write_literal(wb, 0, 2); break; case PROFILE_1: vp9_wb_write_literal(wb, 2, 2); break; case PROFILE_2: vp9_wb_write_literal(wb, 1, 2); break; case PROFILE_3: vp9_wb_write_literal(wb, 6, 3); break; default: assert(0); } } static void write_bitdepth_colorspace_sampling( VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) { if (cm->profile >= PROFILE_2) { assert(cm->bit_depth > VPX_BITS_8); vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); } vp9_wb_write_literal(wb, cm->color_space, 3); if (cm->color_space != VPX_CS_SRGB) { vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); vp9_wb_write_bit(wb, cm->subsampling_x); vp9_wb_write_bit(wb, cm->subsampling_y); vp9_wb_write_bit(wb, 0); // unused } else { assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); } } else { assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); vp9_wb_write_bit(wb, 0); // unused } } #if CONFIG_ROW_TILE static void write_uncompressed_header(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb, int final_packing) { #else static void write_uncompressed_header(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { #endif VP9_COMMON *const cm = &cpi->common; vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2); write_profile(cm->profile, wb); vp9_wb_write_bit(wb, 0); // show_existing_frame vp9_wb_write_bit(wb, cm->frame_type); vp9_wb_write_bit(wb, cm->show_frame); vp9_wb_write_bit(wb, cm->error_resilient_mode); #if CONFIG_MULTI_REF cpi->refresh_last2_frame = (cm->frame_type == KEY_FRAME || cpi->refresh_last_frame) ? 1 : 0; cpi->refresh_last3_frame = cpi->refresh_last2_frame ? 1 : 0; cpi->refresh_last4_frame = cpi->refresh_last3_frame ? 1 : 0; #endif // CONFIG_MULTI_REF if (cm->frame_type == KEY_FRAME) { write_sync_code(wb); write_bitdepth_colorspace_sampling(cm, wb); write_frame_size(cm, wb); } else { if (!cm->show_frame) vp9_wb_write_bit(wb, cm->intra_only); if (!cm->error_resilient_mode) vp9_wb_write_literal(wb, cm->reset_frame_context, 2); if (cm->intra_only) { write_sync_code(wb); // Note for profile 0, 420 8bpp is assumed. if (cm->profile > PROFILE_0) { write_bitdepth_colorspace_sampling(cm, wb); } vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); write_frame_size(cm, wb); } else { MV_REFERENCE_FRAME ref_frame; vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame), REF_FRAMES_LOG2); vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); } write_frame_size_with_refs(cpi, wb); vp9_wb_write_bit(wb, cm->allow_high_precision_mv); fix_interp_filter(cm); write_interp_filter(cm->interp_filter, wb); } } if (!cm->error_resilient_mode) { vp9_wb_write_bit(wb, cm->refresh_frame_context); vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode); } vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); encode_loopfilter(cm, wb); encode_quantization(cm, wb); encode_segmentation(cm, &cpi->mb.e_mbd, wb); #if CONFIG_ROW_TILE write_tile_info(cpi, wb, final_packing); #else write_tile_info(cm, wb); #endif } #if CONFIG_GLOBAL_MOTION static void write_global_motion_params(Global_Motion_Params *params, vp9_prob *probs, vp9_writer *w) { GLOBAL_MOTION_TYPE gmtype = get_gmtype(params); vp9_write_token(w, vp9_global_motion_types_tree, probs, &global_motion_types_encodings[gmtype]); switch (gmtype) { case GLOBAL_ZERO: break; case GLOBAL_TRANSLATION: vp9_write_primitive_symmetric(w, params->mv.as_mv.col, ABS_TRANSLATION_BITS); vp9_write_primitive_symmetric(w, params->mv.as_mv.row, ABS_TRANSLATION_BITS); break; case GLOBAL_ROTZOOM: vp9_write_primitive_symmetric(w, params->mv.as_mv.col, ABS_TRANSLATION_BITS); vp9_write_primitive_symmetric(w, params->mv.as_mv.row, ABS_TRANSLATION_BITS); vp9_write_primitive_symmetric(w, params->zoom, ABS_ZOOM_BITS); vp9_write_primitive_symmetric(w, params->rotation, ABS_ROTATION_BITS); break; default: assert(0); } } static void write_global_motion(VP9_COMP *cpi, vp9_writer *w) { VP9_COMMON *const cm = &cpi->common; int frame, i; for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { for (i = 0; i < cm->num_global_motion[frame]; ++i) { if (!cpi->global_motion_used[frame]) { vpx_memset( cm->global_motion[frame], 0, MAX_GLOBAL_MOTION_MODELS * sizeof(*cm->global_motion[frame])); } write_global_motion_params( &cm->global_motion[frame][0], cm->fc.global_motion_types_prob, w); /* printf("Enc Ref %d [%d] (used %d): %d %d %d %d\n", frame, cm->current_video_frame, cpi->global_motion_used[frame], cm->global_motion[frame][i].zoom, cm->global_motion[frame][i].rotation, cm->global_motion[frame][i].mv.as_mv.col, cm->global_motion[frame][i].mv.as_mv.row); */ } } } #endif static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { VP9_COMMON *const cm = &cpi->common; #if !CONFIG_TX_SKIP || CONFIG_SUPERTX MACROBLOCKD *const xd = &cpi->mb.e_mbd; #endif FRAME_CONTEXT *const fc = &cm->fc; vp9_writer header_bc; vp9_start_encode(&header_bc, data); #if CONFIG_TX_SKIP encode_txfm_probs(cm, &header_bc); #else if (xd->lossless) cm->tx_mode = ONLY_4X4; else encode_txfm_probs(cm, &header_bc); #endif // CONFIG_TX_SKIP update_coef_probs(cpi, &header_bc); update_skip_probs(cm, &header_bc); #if CONFIG_SR_MODE update_sr_probs(cm, &header_bc); #if SR_USE_MULTI_F update_sr_usfilter_probs(cm, &header_bc); #endif // SR_USE_MULTI_F #endif // CONFIG_SR_MODE if (!frame_is_intra_only(cm)) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i], cm->counts.inter_mode[i], INTER_MODES, &header_bc); } #if CONFIG_NEW_INTER update_inter_compound_mode_probs(cm, &header_bc); #endif // CONFIG_NEW_INTER #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES update_dq_profile_probs(cm, &header_bc); #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (cm->interp_filter == SWITCHABLE) update_switchable_interp_probs(cm, &header_bc); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], cm->counts.intra_inter[i]); if (cm->allow_comp_inter_inter) { const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; vp9_write_bit(&header_bc, use_compound_pred); if (use_compound_pred) { vp9_write_bit(&header_bc, use_hybrid_pred); if (use_hybrid_pred) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], cm->counts.comp_inter[i]); } } if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < REF_CONTEXTS; i++) { for (j = 0; j < (SINGLE_REFS - 1); j++) { vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_probs[i][j], cm->counts.single_ref[i][j]); } } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < REF_CONTEXTS; i++) { for (j = 0; j < (COMP_REFS - 1); j++) { vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_probs[i][j], cm->counts.comp_ref[i][j]); } } } for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i], cm->counts.y_mode[i], INTRA_MODES, &header_bc); #if CONFIG_EXT_PARTITION prob_diff_update(vp9_partition_tree, fc->partition_prob[0], cm->counts.partition[0], PARTITION_TYPES, &header_bc); for (i = 1; i < PARTITION_CONTEXTS; ++i) prob_diff_update(vp9_ext_partition_tree, fc->partition_prob[i], cm->counts.partition[i], EXT_PARTITION_TYPES, &header_bc); #else for (i = 0; i < PARTITION_CONTEXTS; ++i) prob_diff_update(vp9_partition_tree, fc->partition_prob[i], cm->counts.partition[i], PARTITION_TYPES, &header_bc); #endif vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc); #if CONFIG_EXT_TX update_ext_tx_probs(cm, &header_bc); #endif #if CONFIG_SUPERTX if (!xd->lossless) update_supertx_probs(cm, &header_bc); #endif #if CONFIG_TX_SKIP for (i = 0; i < 2; i++) vp9_cond_prob_diff_update(&header_bc, &fc->y_tx_skip_prob[i], cm->counts.y_tx_skip[i]); for (i = 0; i < 2; i++) vp9_cond_prob_diff_update(&header_bc, &fc->uv_tx_skip_prob[i], cm->counts.uv_tx_skip[i]); #endif #if CONFIG_COPY_MODE for (i = 0; i < COPY_MODE_CONTEXTS; i++) { prob_diff_update(vp9_copy_mode_tree_l2, cm->fc.copy_mode_probs_l2[i], cm->counts.copy_mode_l2[i], 2, &header_bc); prob_diff_update(vp9_copy_mode_tree, cm->fc.copy_mode_probs[i], cm->counts.copy_mode[i], COPY_MODE_COUNT - 1, &header_bc); } #endif #if CONFIG_INTERINTRA if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed(i)) { vp9_cond_prob_diff_update(&header_bc, &fc->interintra_prob[i], cm->counts.interintra[i]); } } #if CONFIG_WEDGE_PARTITION for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed(i) && get_wedge_bits(i)) vp9_cond_prob_diff_update(&header_bc, &fc->wedge_interintra_prob[i], cm->counts.wedge_interintra[i]); } #endif // CONFIG_WEDGE_PARTITION } #endif // CONFIG_INTERINTRA #if CONFIG_WEDGE_PARTITION if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) if (get_wedge_bits(i)) vp9_cond_prob_diff_update(&header_bc, &fc->wedge_interinter_prob[i], cm->counts.wedge_interinter[i]); } #endif // CONFIG_WEDGE_PARTITION #if CONFIG_GLOBAL_MOTION write_global_motion(cpi, &header_bc); #endif // CONFIG_GLOBAL_MOTION } #if CONFIG_INTRABC if (frame_is_intra_only(cm)) vp9_write_bit(&header_bc, cm->allow_intrabc_mode); #endif // CONFIG_INTRABC #if CONFIG_PALETTE if (frame_is_intra_only(cm)) vp9_write_bit(&header_bc, cm->allow_palette_mode); #endif // CONFIG_PALETTE vp9_stop_encode(&header_bc); assert(header_bc.pos <= 0xffff); return header_bc.pos; } #if CONFIG_ROW_TILE int vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size, int final_packing) { #else void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { #endif uint8_t *data = dest; size_t first_part_size, uncompressed_hdr_size; struct vp9_write_bit_buffer wb = {data, 0}; struct vp9_write_bit_buffer saved_wb; #if CONFIG_ROW_TILE write_uncompressed_header(cpi, &wb, final_packing); #else write_uncompressed_header(cpi, &wb); #endif saved_wb = wb; vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size uncompressed_hdr_size = vp9_wb_bytes_written(&wb); data += uncompressed_hdr_size; vp9_clear_system_state(); first_part_size = write_compressed_header(cpi, data); data += first_part_size; // TODO(jbb): Figure out what to do if first_part_size > 16 bits. vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16); #if CONFIG_ROW_TILE { size_t total_size = encode_tiles(cpi, data, final_packing); // If tile size is out of the range, exit and do another packing. if (total_size == 0) return -1; data += total_size; } #else data += encode_tiles(cpi, data); #endif *size = data - dest; #if CONFIG_ROW_TILE return 0; #endif }