/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include // qsort() #include "./vp9_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_thread.h" #include "vp9/common/vp9_tile_common.h" #if CONFIG_SR_MODE #include "vp9/common/vp9_sr_txfm.h" #endif // CONFIG_SR_MODE #include "vp9/decoder/vp9_decodeframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decoder.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_dthread.h" #include "vp9/decoder/vp9_read_bit_buffer.h" #include "vp9/decoder/vp9_reader.h" #define MAX_VP9_HEADER_SIZE 80 static int is_compound_reference_allowed(const VP9_COMMON *cm) { int i; for (i = 1; i < REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_reference_mode(VP9_COMMON *cm) { if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; #if CONFIG_MULTI_REF cm->comp_var_ref[1] = LAST2_FRAME; cm->comp_var_ref[2] = LAST3_FRAME; cm->comp_var_ref[3] = LAST4_FRAME; cm->comp_var_ref[4] = GOLDEN_FRAME; #else // CONFIG_MULTI_REF cm->comp_var_ref[1] = GOLDEN_FRAME; #endif // CONFIG_MULTI_REF } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { #if CONFIG_MULTI_REF assert(0); #endif // CONFIG_MULTI_REF cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { // same sign bias for GOLDEN / ALTREF #if CONFIG_MULTI_REF assert(0); #endif // CONFIG_MULTI_REF cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vp9_reader *r) { TX_MODE tx_mode = vp9_read_literal(r, 2); #if CONFIG_TX64X64 if (tx_mode == 2) tx_mode += vp9_read_bit(r); // ALLOW_16X16 and ALLOW_32X32 else if (tx_mode == 3) tx_mode += 1 + vp9_read_bit(r); // ALLOW_64X64 and TX_MODE_SELECT #else if (tx_mode == ALLOW_32X32) tx_mode += vp9_read_bit(r); #endif return tx_mode; } static void read_tx_mode_probs(struct tx_probs *tx_probs, vp9_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < 1; ++j) vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < 2; ++j) vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < 3; ++j) vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); #if CONFIG_TX64X64 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < 4; ++j) vp9_diff_update_prob(r, &tx_probs->p64x64[i][j]); #endif } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES static void read_dq_profile_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i; for (i = 0; i < QUANT_PROFILES - 1; ++i) vp9_diff_update_prob(r, &fc->dq_profile_prob[i]); } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } #if CONFIG_SR_MODE && SR_USE_MULTI_F static void read_sr_usfilter_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < SR_USFILTER_CONTEXTS; ++i) for (j = 0; j < SR_USFILTER_NUM - 1; ++j) vp9_diff_update_prob(r, &fc->sr_usfilter_probs[i][j]); } #endif // CONFIG_SR_MODE && SR_USE_MULTI_F static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm, vp9_reader *r) { if (is_compound_reference_allowed(cm)) { return vp9_read_bit(r) ? (vp9_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) : SINGLE_REFERENCE; } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(VP9_COMMON *cm, vp9_reader *r) { FRAME_CONTEXT *const fc = &cm->fc; int i, j; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) vp9_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < (SINGLE_REFS - 1); ++j) { vp9_diff_update_prob(r, &fc->single_ref_probs[i][j]); } } if (cm->reference_mode != SINGLE_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < (COMP_REFS - 1); ++j) { vp9_diff_update_prob(r, &fc->comp_ref_probs[i][j]); } } } static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) { int i; for (i = 0; i < n; ++i) if (vp9_read(r, MV_UPDATE_PROB)) p[i] = (vp9_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) { int i; #if CONFIG_NEW_QUANT int dq; #endif // CONFIG_NEW_QUANT xd->plane[0].dequant = cm->y_dequant[q_index]; #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { xd->plane[0].dequant_val_nuq[dq] = (const dequant_val_type_nuq *)cm->y_dequant_val_nuq[dq][q_index]; } #endif // CONFIG_NEW_QUANT #if CONFIG_TX_SKIP xd->plane[0].dequant_pxd = cm->y_dequant_pxd[q_index]; #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { xd->plane[0].dequant_val_nuq_pxd[dq] = (const dequant_val_type_nuq *)cm->y_dequant_val_nuq_pxd[dq][q_index]; } #endif // CONFIG_NEW_QUANT #endif // CONFIG_TX_SKIP for (i = 1; i < MAX_MB_PLANE; i++) { xd->plane[i].dequant = cm->uv_dequant[q_index]; #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { xd->plane[i].dequant_val_nuq[dq] = (const dequant_val_type_nuq *)cm->uv_dequant_val_nuq[dq][q_index]; } #endif // CONFIG_NEW_QUANT #if CONFIG_TX_SKIP xd->plane[i].dequant_pxd = cm->uv_dequant_pxd[q_index]; #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { xd->plane[i].dequant_val_nuq_pxd[dq] = (const dequant_val_type_nuq *)cm->uv_dequant_val_nuq_pxd[dq][q_index]; } #endif // CONFIG_NEW_QUANT #endif // CONFIG_TX_SKIP } } #if CONFIG_TX_SKIP static void vp9_intra_dpcm_add(tran_low_t *dqcoeff, uint8_t *dst, int stride, PREDICTION_MODE mode, int bs, int shift) { int r, c, temp; switch (mode) { case H_PRED: for (r = 0; r < bs; r++) { temp = dst[r * stride] + (dqcoeff[r * bs] >> shift); dst[r * stride] = clip_pixel(temp); } for (r = 0; r < bs; r++) for (c = 1; c < bs; c++) { temp = dst[r * stride + c - 1] + (dqcoeff[r * bs + c] >> shift); dst[r * stride + c] = clip_pixel(temp); } break; case V_PRED: for (c = 0; c < bs; c++) { temp = dst[c] + (dqcoeff[c] >> shift); dst[c] = clip_pixel(temp); } for (r = 1; r < bs; r++) for (c = 0; c < bs; c++) { temp = dst[(r - 1) * stride + c] + (dqcoeff[r * bs + c] >> shift); dst[r * stride + c] = clip_pixel(temp); } break; case TM_PRED: for (c = 0; c < bs; c++) { temp = dst[c] + (dqcoeff[c] >> shift); dst[c] = clip_pixel(temp); } for (r = 1; r < bs; r++) { temp = dst[r * stride] + (dqcoeff[r * bs] >> shift); dst[r * stride] = clip_pixel(temp); } for (r = 1; r < bs; r++) for (c = 1; c < bs; c++) { temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] - dst[stride * (r - 1) + c - 1]; temp = clip_pixel(temp); temp = temp + (dqcoeff[r * bs + c] >> shift); dst[stride * r + c] = clip_pixel(temp); } break; default: break; } } static void vp9_intra_dpcm_add_nocoeff(uint8_t *dst, int stride, PREDICTION_MODE mode, int bs) { int r, c, temp; switch (mode) { case H_PRED: for (r = 0; r < bs; r++) vpx_memset(dst + r * stride + 1, dst[r * stride], bs - 1); break; case V_PRED: for (r = 1; r < bs; r++) vpx_memcpy(dst + r * stride, dst, bs * sizeof(*dst)); break; case TM_PRED: for (r = 1; r < bs; r++) for (c = 1; c < bs; c++) { temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] - dst[stride * (r - 1) + c - 1]; dst[stride * r + c] = clip_pixel(temp); } break; default: break; } } #if CONFIG_VP9_HIGHBITDEPTH static void vp9_highbd_intra_dpcm_add(tran_low_t *dqcoeff, uint8_t *dst8, int stride, PREDICTION_MODE mode, int bs, int shift, int bd) { int r, c, temp; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); switch (mode) { case H_PRED: for (r = 0; r < bs; r++) dst[r * stride] = clip_pixel_highbd(dst[r * stride] + (dqcoeff[r * bs] >> shift), bd); for (r = 0; r < bs; r++) for (c = 1; c < bs; c++) dst[r * stride + c] = clip_pixel_highbd(dst[r * stride + c - 1] + (dqcoeff[r * bs + c] >> shift), bd); break; case V_PRED: for (c = 0; c < bs; c++) dst[c] = clip_pixel_highbd(dst[c] + (dqcoeff[c] >> shift), bd); for (r = 1; r < bs; r++) for (c = 0; c < bs; c++) dst[r * stride + c] = clip_pixel_highbd(dst[(r - 1) * stride + c] + (dqcoeff[r * bs + c] >> shift), bd); break; case TM_PRED: for (c = 0; c < bs; c++) dst[c] = clip_pixel_highbd(dst[c] + (dqcoeff[c] >> shift), bd); for (r = 1; r < bs; r++) dst[r * stride] = clip_pixel_highbd(dst[r * stride] + (dqcoeff[r * bs] >> shift), bd); for (r = 1; r < bs; r++) for (c = 1; c < bs; c++) { temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] - dst[stride * (r - 1) + c - 1]; temp = clip_pixel_highbd(temp, bd); dst[stride * r + c] = clip_pixel_highbd(temp + (dqcoeff[r * bs + c] >> shift), bd); } break; default: break; } } static void vp9_highbd_intra_dpcm_add_nocoeff(uint8_t *dst8, int stride, PREDICTION_MODE mode, int bs, int bd) { int r, c, temp; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); switch (mode) { case H_PRED: for (r = 0; r < bs; r++) for (c = 1; c < bs; c++) dst[r * stride + c] = dst[r * stride]; break; case V_PRED: for (r = 1; r < bs; r++) vpx_memcpy(dst + r * stride, dst, bs * sizeof(dst[0])); break; case TM_PRED: for (r = 1; r < bs; r++) for (c = 1; c < bs; c++) { temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] - dst[stride * (r - 1) + c - 1]; dst[stride * r + c] = clip_pixel_highbd(temp, bd); } break; default: break; } } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_TX_SKIP #if CONFIG_SR_MODE static void inverse_transform_block_sr( MACROBLOCKD* xd, int plane, int block, TX_SIZE tx_size, int16_t *dst, int stride, int eob) { // only perform inverse transform but don't add struct macroblockd_plane *const pd = &xd->plane[plane]; int bs = (4 << (tx_size + 1)); if (eob > 0) { TX_TYPE tx_type = DCT_DCT; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); if (xd->lossless) { tx_type = DCT_DCT; vp9_iwht4x4(dqcoeff, dst, stride, eob); } else { const PLANE_TYPE plane_type = pd->plane_type; switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(plane_type, xd, block); vp9_iht4x4(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: tx_type = get_tx_type(plane_type, xd); vp9_iht8x8(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: tx_type = get_tx_type(plane_type, xd); vp9_iht16x16(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: tx_type = get_tx_type_large(plane_type, xd); vp9_idct32x32(dqcoeff, dst, stride, eob); break; #if CONFIG_TX64X64 case TX_64X64: tx_type = get_tx_type_large(plane_type, xd); vp9_idct64x64(dqcoeff, dst, stride, eob); break; #endif // CONFIG_TX64X64 default: assert(0 && "Invalid transform size"); return; } } // Safer to set it all zeros vpx_memset(dqcoeff, 0, bs * bs * sizeof(dqcoeff[0])); /* if (eob == 1) { vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0])); } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } */ } } #endif // CONFIG_SR_MODE static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block, TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_SR_MODE int bs = 4 << tx_size; #endif // CONFIG_SR_MODE #if CONFIG_TX_SKIP MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi; int shift = mbmi->tx_skip_shift; PREDICTION_MODE mode = (plane == 0) ? get_y_mode(xd->mi[0].src_mi, block): mbmi->uv_mode; (void) mode; #endif if (eob > 0) { TX_TYPE tx_type = DCT_DCT; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { #if CONFIG_TX_SKIP if (xd->lossless && !mbmi->tx_skip[plane != 0]) { #else if (xd->lossless) { #endif // CONFIG_TX_SKIP tx_type = DCT_DCT; vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd); } else { const PLANE_TYPE plane_type = pd->plane_type; #if CONFIG_TX_SKIP if (mbmi->tx_skip[plane != 0]) { int bs = 4 << tx_size; if (tx_size <= TX_32X32 && (mode == V_PRED || mode == H_PRED || mode == TM_PRED)) vp9_highbd_intra_dpcm_add(dqcoeff, dst, stride, mode, bs, shift, xd->bd); else vp9_highbd_tx_identity_add(dqcoeff, dst, stride, bs, shift, xd->bd); tx_type = DCT_DCT; if (tx_size == TX_4X4) tx_type = get_tx_type_4x4(pd->plane_type, xd, block); else if (tx_size <= TX_16X16) tx_type = get_tx_type(pd->plane_type, xd); } else { #endif // CONFIG_TX_SKIP switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(plane_type, xd, block); vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_8X8: tx_type = get_tx_type(plane_type, xd); vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_16X16: tx_type = get_tx_type(plane_type, xd); vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_32X32: tx_type = get_tx_type_large(plane_type, xd); vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd); break; #if CONFIG_TX64X64 case TX_64X64: tx_type = get_tx_type_large(plane_type, xd); vp9_highbd_idct64x64_add(dqcoeff, dst, stride, eob, xd->bd); break; #endif // CONFIG_TX64X64 default: assert(0 && "Invalid transform size"); } #if CONFIG_TX_SKIP } #endif // CONFIG_TX_SKIP } } else { #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_TX_SKIP if (xd->lossless && !mbmi->tx_skip[plane != 0]) { #else if (xd->lossless) { #endif tx_type = DCT_DCT; vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { const PLANE_TYPE plane_type = pd->plane_type; #if CONFIG_TX_SKIP if (mbmi->tx_skip[plane != 0]) { int bs = 4 << tx_size; if (tx_size <= TX_32X32 && (mode == H_PRED || mode == V_PRED || mode == TM_PRED)) vp9_intra_dpcm_add(dqcoeff, dst, stride, mode, bs, shift); else vp9_tx_identity_add(dqcoeff, dst, stride, bs, shift); tx_type = DCT_DCT; if (tx_size == TX_4X4) tx_type = get_tx_type_4x4(pd->plane_type, xd, block); else if (tx_size <= TX_16X16) tx_type = get_tx_type(pd->plane_type, xd); } else { #endif // CONFIG_TX_SKIP switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(plane_type, xd, block); vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: tx_type = get_tx_type(plane_type, xd); vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: tx_type = get_tx_type(plane_type, xd); vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: tx_type = get_tx_type_large(plane_type, xd); #if CONFIG_EXT_TX && CONFIG_WAVELETS if (tx_type == WAVELET1_DCT_DCT) vp9_idwtdct32x32_add(dqcoeff, dst, stride); else #endif // CONFIG_EXT_TX && CONFIG_WAVELETS vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; #if CONFIG_TX64X64 case TX_64X64: tx_type = get_tx_type_large(plane_type, xd); #if CONFIG_EXT_TX && CONFIG_WAVELETS if (tx_type == WAVELET1_DCT_DCT) vp9_idwtdct64x64_add(dqcoeff, dst, stride); else #endif // CONFIG_EXT_TX && CONFIG_WAVELETS vp9_idct64x64_add(dqcoeff, dst, stride, eob); break; #endif // CONFIG_TX64X64 default: assert(0 && "Invalid transform size"); return; } #if CONFIG_TX_SKIP } #endif // CONFIG_TX_SKIP } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_SR_MODE // Safer to set it all zeros vpx_memset(dqcoeff, 0, bs * bs * sizeof(dqcoeff[0])); #else // CONFIG_SR_MODE if (eob == 1) { vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0])); } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } #endif // CONFIG_SR_MODE } } struct intra_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; }; #if CONFIG_SR_MODE static int dec_sr_trfm_quant(VP9_COMMON *cm, MACROBLOCKD *xd, int plane, int block, BLOCK_SIZE plane_bsize, int x, int y, TX_SIZE tx_size, vp9_reader *r, uint8_t *dst, int dst_stride) { DECLARE_ALIGNED_ARRAY(16, int16_t, tmp_buf, 64 * 64); int tmp_stride = 64; int eob, bs = 4 << tx_size; #if SR_USE_MULTI_F MODE_INFO *const mi = xd->mi[0].src_mi; int f_idx = mi->mbmi.us_filter_idx; int f_hor = idx_to_h(f_idx); int f_ver = idx_to_v(f_idx); #endif // SR_USE_MULTI_F if (plane == 0) assert(bs == 32 || bs == 16); tx_size--; eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, r); if (eob <= 0) return eob; inverse_transform_block_sr(xd, plane, block, tx_size, tmp_buf, tmp_stride, eob); #if SR_USE_MULTI_F sr_recon(tmp_buf, tmp_stride, dst, dst_stride, bs, bs, f_hor, f_ver); #else // SR_USE_MULTI_F sr_recon(tmp_buf, tmp_stride, dst, dst_stride, bs, bs); #endif // SR_USE_MULTI_F return eob; } #endif // CONFIG_SR_MODE static void predict_and_reconstruct_intra_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct intra_args *const args = (struct intra_args *)arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0].src_mi; const PREDICTION_MODE mode = (plane == 0) ? get_y_mode(mi, block) : mi->mbmi.uv_mode; int x, y; uint8_t *dst; #if CONFIG_TX_SKIP int no_coeff = 0; #endif int eob; #if CONFIG_FILTERINTRA int fbit; if (plane == 0) if (mi->mbmi.sb_type < BLOCK_8X8) fbit = mi->b_filter_info[block]; else fbit = is_filter_enabled(tx_size) ? mi->mbmi.filterbit : 0; else fbit = is_filter_enabled(tx_size) ? mi->mbmi.uv_filterbit : 0; #endif txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x]; vp9_predict_intra_block(xd, block >> (tx_size << 1), b_width_log2_lookup[plane_bsize], tx_size, mode, #if CONFIG_FILTERINTRA fbit, #endif dst, pd->dst.stride, dst, pd->dst.stride, x, y, plane); if (!mi->mbmi.skip) { #if CONFIG_SR_MODE if (mi->mbmi.sr && plane == 0) { // if (mi->mbmi.sr) { eob = dec_sr_trfm_quant(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r, dst, pd->dst.stride); } else { #endif // CONFIG_SR_MODE eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r); inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride, eob); #if CONFIG_SR_MODE } #endif // CONFIG_SR_MODE #if CONFIG_TX_SKIP no_coeff = !eob; #endif } #if CONFIG_TX_SKIP if ((mi->mbmi.skip || no_coeff) && mi->mbmi.tx_skip[plane != 0] && mode == TM_PRED && tx_size <= TX_32X32) { int bs = 4 * (1 << tx_size); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) vp9_highbd_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs, xd->bd); else vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs); #else vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs); #endif // CONFIG_VP9_HIGHBITDEPTH } #endif #if CONFIG_TX_SKIP && CONFIG_FILTERINTRA if ((mi->mbmi.skip || no_coeff) && mi->mbmi.tx_skip[plane != 0] && (mode == H_PRED || mode == V_PRED) && fbit && tx_size <= TX_32X32) { int bs = 4 * (1 << tx_size); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) vp9_highbd_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs, xd->bd); else vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs); #else vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs); #endif // CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_TX_SKIP && CONFIG_FILTERINTRA } struct inter_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; int *eobtotal; }; static void reconstruct_inter_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct inter_args *args = (struct inter_args *)arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; int x, y, eob; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); #if CONFIG_SR_MODE if (xd->mi[0].src_mi->mbmi.sr && plane == 0) { // if (xd->mi[0].src_mi->mbmi.sr) { eob = dec_sr_trfm_quant( cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r, &pd->dst.buf[4 * y * pd->dst.stride + 4 * x], pd->dst.stride); } else { #endif // CONFIG_SR_MODE eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r); inverse_transform_block(xd, plane, block, tx_size, &pd->dst.buf[4 * y * pd->dst.stride + 4 * x], pd->dst.stride, eob); #if CONFIG_SR_MODE } #endif // CONFIG_SR_MODE *args->eobtotal += eob; } static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; // Point to self. xd->mi[0].mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x].src_mi = &xd->mi[0]; } set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return &xd->mi[0].mbmi; } #if CONFIG_SUPERTX static MB_MODE_INFO *set_offsets_extend(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize_pred, int mi_row_pred, int mi_col_pred, int mi_row_ori, int mi_col_ori) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict const int bw = num_8x8_blocks_wide_lookup[bsize_pred]; const int bh = num_8x8_blocks_high_lookup[bsize_pred]; const int offset = mi_row_ori * cm->mi_stride + mi_col_ori; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows, cm->mi_cols); xd->up_available = (mi_row_ori != 0); xd->left_available = (mi_col_ori > tile->mi_col_start); return &xd->mi[0].mbmi; } static MB_MODE_INFO *set_mb_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; xd->mi[0].mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); return &xd->mi[0].mbmi; } static void set_offsets_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int offset = mi_row * cm->mi_stride + mi_col; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); } static void set_param_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, #if CONFIG_EXT_TX int txfm, #endif // CONFIG_EXT_TX #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 int dq_off_index, #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 int skip) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; for (y = 0; y < y_mis; ++y) for (x = 0; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x].mbmi.skip = skip; #if CONFIG_EXT_TX xd->mi[y * cm->mi_stride + x].mbmi.ext_txfrm = txfm; #endif // CONFIG_EXT_TX #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 xd->mi[y * cm->mi_stride + x].mbmi.dq_off_index = dq_off_index; #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 } } static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi[0].mbmi; RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; xd->block_refs[idx] = ref_buffer; if (!vp9_is_valid_scale(&ref_buffer->sf)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); vp9_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, &ref_buffer->sf); xd->corrupted |= ref_buffer->buf->corrupted; } static void dec_predict_b_extend( VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, int mi_row_top, int mi_col_top, uint8_t * dst_buf[3], int dst_stride[3], BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict // (mi_row_top, mi_col_top, bsize_top): region of the top partition size // block: sub location of sub8x8 blocks // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 // bextend: 1: region to predict is an extension of ori; 0: not int r = (mi_row_pred - mi_row_top) * MI_SIZE; int c = (mi_col_pred - mi_col_top) * MI_SIZE; const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top]; const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top]; MB_MODE_INFO *mbmi; if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || mi_row_pred >= mi_row_top + mi_height_top || mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || mi_col_pred >= cm->mi_cols) return; mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred, mi_row_ori, mi_col_ori); set_ref(cm, xd, 0, mi_row_pred, mi_col_pred); if (has_second_ref(&xd->mi[0].mbmi)) set_ref(cm, xd, 1, mi_row_pred, mi_col_pred); if (!bextend) { mbmi->tx_size = b_width_log2_lookup[bsize_top]; } xd->plane[0].dst.stride = dst_stride[0]; xd->plane[1].dst.stride = dst_stride[1]; xd->plane[2].dst.stride = dst_stride[2]; xd->plane[0].dst.buf = dst_buf[0] + (r >> xd->plane[0].subsampling_y) * dst_stride[0] + (c >> xd->plane[0].subsampling_x); xd->plane[1].dst.buf = dst_buf[1] + (r >> xd->plane[1].subsampling_y) * dst_stride[1] + (c >> xd->plane[1].subsampling_x); xd->plane[2].dst.buf = dst_buf[2] + (r >> xd->plane[2].subsampling_y) * dst_stride[2] + (c >> xd->plane[2].subsampling_x); #if CONFIG_WEDGE_PARTITION if (!b_sub8x8) vp9_dec_build_inter_predictors_sb_extend(xd, mi_row_ori, mi_col_ori, mi_row_pred, mi_col_pred, bsize_pred); else vp9_dec_build_inter_predictors_sb_sub8x8_extend( xd, mi_row_ori, mi_col_ori, mi_row_pred, mi_col_pred, bsize_pred, block); #else if (!b_sub8x8) vp9_dec_build_inter_predictors_sb(xd, mi_row_pred, mi_col_pred, bsize_pred); else vp9_dec_build_inter_predictors_sb_sub8x8(xd, mi_row_pred, mi_col_pred, bsize_pred, block); #endif // CONFIG_WEDGE_PARTITION } static void dec_extend_dir(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t * dst_buf[3], int dst_stride[3], int dir) { // dir: 0-lower, 1-upper, 2-left, 3-right // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; int xss = xd->plane[1].subsampling_x; int yss = xd->plane[1].subsampling_y; int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0; BLOCK_SIZE extend_bsize; int unit, mi_row_pred, mi_col_pred; if (dir == 0 || dir == 1) { extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss) ? BLOCK_8X8 : BLOCK_16X8; unit = num_8x8_blocks_wide_lookup[extend_bsize]; mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1); mi_col_pred = mi_col; dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); if (mi_width > unit) { int i; assert(!b_sub8x8); for (i = 0; i < mi_width/unit - 1; i++) { mi_col_pred += unit; dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } } else if (dir == 2 || dir == 3) { extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss) ? BLOCK_8X8 : BLOCK_8X16; unit = num_8x8_blocks_high_lookup[extend_bsize]; mi_row_pred = mi_row; mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1); dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); if (mi_height > unit) { int i; for (i = 0; i < mi_height/unit - 1; i++) { mi_row_pred += unit; dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } } else { extend_bsize = BLOCK_8X8; mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1); mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1); dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } static void dec_extend_all(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t * dst_buf[3], int dst_stride[3]) { dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 1); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 2); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 4); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 5); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 6); dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 7); } static void dec_predict_sb_complex(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, int mi_row_top, int mi_col_top, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], int dst_stride[3]) { const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; PARTITION_TYPE partition; BLOCK_SIZE subsize; #if !CONFIG_EXT_PARTITION MB_MODE_INFO *mbmi; #endif int i, offset = mi_row * cm->mi_stride + mi_col; #if CONFIG_EXT_PARTITION BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t)); DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t)); DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf3, MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t)); int dst_stride1[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN}; int dst_stride2[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN}; int dst_stride3[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN}; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAXTXLEN * MAXTXLEN * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAXTXLEN * MAXTXLEN * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAXTXLEN * MAXTXLEN * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAXTXLEN * MAXTXLEN * len); dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAXTXLEN * MAXTXLEN * len); dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAXTXLEN * MAXTXLEN * len); } else { #endif dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAXTXLEN * MAXTXLEN; dst_buf1[2] = tmp_buf1 + 2 * MAXTXLEN * MAXTXLEN; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAXTXLEN * MAXTXLEN; dst_buf2[2] = tmp_buf2 + 2 * MAXTXLEN * MAXTXLEN; dst_buf3[0] = tmp_buf3; dst_buf3[1] = tmp_buf3 + MAXTXLEN * MAXTXLEN; dst_buf3[2] = tmp_buf3 + 2 * MAXTXLEN * MAXTXLEN; #if CONFIG_VP9_HIGHBITDEPTH } #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; #if CONFIG_EXT_PARTITION partition = get_partition(cm->mi, cm->mi_stride, cm->mi_rows, cm->mi_cols, mi_row, mi_col, bsize); #else mbmi = &xd->mi[0].mbmi; partition = partition_lookup[bsl][mbmi->sb_type]; #endif subsize = get_subsize(bsize, partition); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; } switch (partition) { case PARTITION_NONE: assert(bsize < top_bsize); dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); break; case PARTITION_HORZ: if (bsize == BLOCK_8X8) { // For sub8x8, predict in 8x8 unit // First half dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(cm, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // weighted average to smooth the boundary xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], &xd->plane[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, 0); } else { // First half dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); if (mi_row + hbs < cm->mi_rows) { // Second half dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 1); // weighted average to smooth the boundary for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } } break; case PARTITION_VERT: if (bsize == BLOCK_8X8) { // First half dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(cm, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // Smooth xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], &xd->plane[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, 0); } else { // First half dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); // Second half if (mi_col + hbs < cm->mi_cols) { dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 2); // Smooth for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } } } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) { dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); dec_predict_b_extend(cm, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(cm, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(cm, xd, tile, 3, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) { dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_extend_all(cm, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_extend_all(cm, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); dec_extend_all(cm, xd, tile, 3, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3); } } else { dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf, dst_stride); if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf1, dst_stride1); if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf2, dst_stride2); if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf3, dst_stride3); } for (i = 0; i < MAX_MB_PLANE; i++) { if (bsize == BLOCK_8X8 && i != 0) continue; // Skip <4x4 chroma smoothing if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); if (mi_row + hbs < cm->mi_rows) { vp9_build_masked_inter_predictor_complex(xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } break; #if CONFIG_EXT_PARTITION case PARTITION_HORZ_A: dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 1); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_A: dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; case PARTITION_HORZ_B: dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_B: dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; vp9_build_masked_inter_predictor_complex(xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], &xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; #endif default: assert(0); } } #endif // CONFIG_SUPERTX static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, #if CONFIG_SUPERTX int supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION PARTITION_TYPE partition, #endif #endif int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE bsize) { const int less8x8 = bsize < BLOCK_8X8; #if CONFIG_TX_SKIP int q_idx; #endif #if CONFIG_SUPERTX MB_MODE_INFO *mbmi; if (supertx_enabled) { mbmi = set_mb_offsets(cm, xd, tile, bsize, mi_row, mi_col); } else { mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col); } vp9_read_mode_info(cm, xd, tile, supertx_enabled, #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r); #else MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col); vp9_read_mode_info(cm, xd, tile, #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r); #endif // CONFIG_SUPERTX #if CONFIG_TX_SKIP q_idx = vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex); mbmi->tx_skip_shift = q_idx > TX_SKIP_SHIFT_THRESH ? TX_SKIP_SHIFT_HQ : TX_SKIP_SHIFT_LQ; #endif #if CONFIG_SUPERTX if (!supertx_enabled) { #endif if (less8x8) bsize = BLOCK_8X8; if (mbmi->skip) { reset_skip_context(xd, bsize); } else { if (cm->seg.enabled) { setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex)); } } if (!is_inter_block(mbmi) #if CONFIG_INTRABC && !is_intrabc_mode(mbmi->mode) #endif // CONFIG_INTRABC ) { struct intra_args arg = { cm, xd, r }; vp9_foreach_transformed_block(xd, bsize, predict_and_reconstruct_intra_block, &arg); } else { // Prediction vp9_dec_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); // Reconstruction if (!mbmi->skip) { int eobtotal = 0; struct inter_args arg = { cm, xd, r, &eobtotal }; vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg); #if CONFIG_BITSTREAM_FIXES #else if (!less8x8 && eobtotal == 0) mbmi->skip = 1; // skip loopfilter #endif } } #if CONFIG_SUPERTX } #endif xd->corrupted |= vp9_reader_has_error(r); } static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs, int mi_row, int mi_col, BLOCK_SIZE bsize, vp9_reader *r) { const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const vp9_prob *const probs = get_partition_probs(cm, ctx); const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; PARTITION_TYPE p; if (has_rows && has_cols) { #if CONFIG_EXT_PARTITION if (bsize <= BLOCK_8X8) p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs); else p = (PARTITION_TYPE)vp9_read_tree(r, vp9_ext_partition_tree, probs); #else p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs); #endif } else if (!has_rows && has_cols) { p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; } else if (has_rows && !has_cols) { p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; } else { p = PARTITION_SPLIT; } if (!cm->frame_parallel_decoding_mode) ++cm->counts.partition[ctx][p]; return p; } #if CONFIG_SUPERTX static int read_skip_without_seg(VP9_COMMON *cm, const MACROBLOCKD *xd, vp9_reader *r) { const int ctx = vp9_get_skip_context(xd); const int skip = vp9_read(r, cm->fc.skip_probs[ctx]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.skip[ctx][skip]; return skip; } #endif // CONFIG_SUPERTX static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col, vp9_reader* r, BLOCK_SIZE bsize) { const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; PARTITION_TYPE partition; BLOCK_SIZE subsize, uv_subsize; #if CONFIG_EXT_PARTITION BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif #if CONFIG_SUPERTX const int read_token = !supertx_enabled; int skip = 0; TX_SIZE supertx_size = b_width_log2_lookup[bsize]; #if CONFIG_EXT_TX int txfm = NORM; #endif #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 int dq_off_index = 0; #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 #endif // CONFIG_SUPERTX if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r); subsize = get_subsize(bsize, partition); uv_subsize = ss_size_lookup[subsize][cm->subsampling_x][cm->subsampling_y]; if (subsize >= BLOCK_8X8 && uv_subsize == BLOCK_INVALID) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); #if CONFIG_SUPERTX if (cm->frame_type != KEY_FRAME && partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless) { const int supertx_context = partition_supertx_context_lookup[partition]; supertx_enabled = vp9_read( r, cm->fc.supertx_prob[supertx_context][supertx_size]); cm->counts.supertx[supertx_context][supertx_size][supertx_enabled]++; } if (supertx_enabled && read_token) { int offset = mi_row * cm->mi_stride + mi_col; xd->mi = cm->mi + offset; xd->mi[0].src_mi = &xd->mi[0]; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); set_skip_context(xd, mi_row, mi_col); // Here skip is read without using any segment level feature skip = read_skip_without_seg(cm, xd, r); if (skip) reset_skip_context(xd, bsize); #if CONFIG_EXT_TX if (!skip) { if (supertx_size <= TX_16X16) { txfm = vp9_read_tree(r, vp9_ext_tx_tree, cm->fc.ext_tx_prob[supertx_size]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.ext_tx[supertx_size][txfm]; #if CONFIG_WAVELETS } else { txfm = vp9_read_tree(r, vp9_ext_tx_large_tree, cm->fc.ext_tx_prob[supertx_size]); if (!cm->frame_parallel_decoding_mode) ++cm->counts.ext_tx[supertx_size][txfm]; #endif // CONFIG_WAVELETS } } #endif // CONFIG_EXT_TX #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (cm->base_qindex > Q_THRESHOLD_MIN && cm->base_qindex < Q_THRESHOLD_MAX && switchable_dq_profile_used(get_entropy_context_sb(xd, bsize), bsize) && !skip && !vp9_segfeature_active( &cm->seg, xd->mi[0].mbmi.segment_id, SEG_LVL_SKIP)) { dq_off_index = vp9_read_dq_profile(cm, r); } else { dq_off_index = 0; } #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES } #endif // CONFIG_SUPERTX if (subsize < BLOCK_8X8) { decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); } else { switch (partition) { case PARTITION_NONE: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); break; case PARTITION_HORZ: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); if (mi_row + hbs < cm->mi_rows) decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col, r, subsize); break; case PARTITION_VERT: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); if (mi_col + hbs < cm->mi_cols) decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col + hbs, r, subsize); break; case PARTITION_SPLIT: #if CONFIG_SUPERTX decode_partition(cm, xd, tile, supertx_enabled, mi_row, mi_col, r, subsize); decode_partition(cm, xd, tile, supertx_enabled, mi_row, mi_col + hbs, r, subsize); decode_partition(cm, xd, tile, supertx_enabled, mi_row + hbs, mi_col, r, subsize); decode_partition(cm, xd, tile, supertx_enabled, mi_row + hbs, mi_col + hbs, r, subsize); #else decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize); decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize); decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize); decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize); #endif break; #if CONFIG_EXT_PARTITION case PARTITION_HORZ_A: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col + hbs, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col, r, subsize); break; case PARTITION_HORZ_B: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col + hbs, r, bsize2); break; case PARTITION_VERT_A: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col + hbs, r, subsize); break; case PARTITION_VERT_B: decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col, r, subsize); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row, mi_col + hbs, r, bsize2); decode_block(cm, xd, tile, #if CONFIG_SUPERTX supertx_enabled, #endif #if CONFIG_COPY_MODE #if CONFIG_EXT_PARTITION partition, #endif #endif mi_row + hbs, mi_col + hbs, r, bsize2); break; #endif default: assert(0 && "Invalid partition type"); } } #if CONFIG_SUPERTX if (supertx_enabled && read_token) { uint8_t *dst_buf[3]; int dst_stride[3], i; vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); for (i = 0; i < MAX_MB_PLANE; i++) { dst_buf[i] = xd->plane[i].dst.buf; dst_stride[i] = xd->plane[i].dst.stride; } dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize, bsize, dst_buf, dst_stride); if (!skip) { int eobtotal = 0; struct inter_args arg = { cm, xd, r, &eobtotal }; set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col); if (cm->seg.enabled) { setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, xd->mi[0].mbmi.segment_id, cm->base_qindex)); } #if CONFIG_EXT_TX xd->mi[0].mbmi.ext_txfrm = txfm; #endif #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 xd->mi[0].mbmi.dq_off_index = dq_off_index; #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg); if (!(subsize < BLOCK_8X8) && eobtotal == 0) skip = 1; } set_param_topblock(cm, xd, bsize, mi_row, mi_col, #if CONFIG_EXT_TX txfm, #endif #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 dq_off_index, #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 skip); } #endif // CONFIG_SUPERTX #if CONFIG_EXT_PARTITION if (bsize >= BLOCK_8X8) { switch (partition) { case PARTITION_SPLIT: if (bsize > BLOCK_8X8) break; case PARTITION_NONE: case PARTITION_HORZ: case PARTITION_VERT: update_partition_context(xd, mi_row, mi_col, subsize, bsize); break; case PARTITION_HORZ_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); break; case PARTITION_HORZ_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); break; case PARTITION_VERT_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); break; case PARTITION_VERT_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); break; default: assert(0 && "Invalid partition type"); } } #else // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct vpx_internal_error_info *error_info, vp9_reader *r, vpx_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vp9_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, vp9_reader *r) { int i, j, k, l, m; if (vp9_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } #if CONFIG_TX_SKIP static void read_coef_probs_common_pxd(vp9_coeff_probs_pxd *coef_probs, vp9_reader *r) { int i, j, l, m; if (vp9_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (l = 0; l < COEFF_CONTEXTS; ++l) for (m = 0; m < ENTROPY_NODES; ++m) vp9_diff_update_prob(r, &coef_probs[i][j][l][m]); } #endif // CONFIG_TX_SKIP static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vp9_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); #if CONFIG_TX_SKIP if (FOR_SCREEN_CONTENT) for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common_pxd(fc->coef_probs_pxd[tx_size], r); #endif // CONFIG_TX_SKIP } static void setup_segmentation(struct segmentation *seg, struct vp9_read_bit_buffer *rb) { int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = vp9_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update seg->update_map = vp9_rb_read_bit(rb); if (seg->update_map) { for (i = 0; i < SEG_TREE_PROBS; i++) seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; seg->temporal_update = vp9_rb_read_bit(rb); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; } } // Segmentation data update seg->update_data = vp9_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = vp9_rb_read_bit(rb); vp9_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vp9_rb_read_bit(rb); if (feature_enabled) { vp9_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vp9_rb_read_bit(rb) ? -data : data; } vp9_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { struct loopfilter *lf = &cm->lf; lf->filter_level = vp9_rb_read_literal(rb, 6); lf->sharpness_level = vp9_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6); } } #if CONFIG_LOOP_POSTFILTER lf->bilateral_level = vp9_rb_read_bit(rb); if (lf->bilateral_level) { int level = vp9_rb_read_literal(rb, vp9_bilateral_level_bits(cm)); lf->bilateral_level = level + (level >= lf->last_bilateral_level); } else { lf->bilateral_level = lf->last_bilateral_level; } if (cm->frame_type != KEY_FRAME) cm->lf.last_bilateral_level = cm->lf.bilateral_level; else cm->lf.last_bilateral_level = 0; #endif // CONFIG_LOOP_POSTFILTER } static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) { const int old = *delta_q; *delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0; return old != *delta_q; } static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, struct vp9_read_bit_buffer *rb) { int update = 0; cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS); update |= read_delta_q(rb, &cm->y_dc_delta_q); update |= read_delta_q(rb, &cm->uv_dc_delta_q); update |= read_delta_q(rb, &cm->uv_ac_delta_q); if (update || cm->bit_depth != cm->dequant_bit_depth) { vp9_init_dequantizer(cm); cm->dequant_bit_depth = cm->bit_depth; } xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; #if CONFIG_VP9_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif } static INTERP_FILTER read_interp_filter(struct vp9_read_bit_buffer *rb) { #if CONFIG_BITSTREAM_FIXES return vp9_rb_read_bit(rb) ? SWITCHABLE : vp9_rb_read_literal(rb, 2); #else const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }; return vp9_rb_read_bit(rb) ? SWITCHABLE : literal_to_filter[vp9_rb_read_literal(rb, 2)]; #endif } void vp9_read_frame_size(struct vp9_read_bit_buffer *rb, int *width, int *height) { *width = vp9_rb_read_literal(rb, 16) + 1; *height = vp9_rb_read_literal(rb, 16) + 1; } static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { cm->display_width = cm->width; cm->display_height = cm->height; if (vp9_rb_read_bit(rb)) vp9_read_frame_size(rb, &cm->display_width, &cm->display_height); } static void resize_context_buffers(VP9_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Width and height beyond allowed size."); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in vp9_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (vp9_alloc_context_buffers(cm, width, height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } else { vp9_set_mb_mi(cm, width, height); } vp9_init_context_buffers(cm); cm->width = width; cm->height = height; } } static void setup_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int width, height; vp9_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_display_size(cm, rb); if (vp9_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, &cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb, cm->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } cm->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; cm->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; cm->frame_bufs[cm->new_fb_idx].buf.color_space = (vpx_color_space_t)cm->color_space; cm->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; } static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, vpx_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; for (i = 0; i < REFS_PER_FRAME; ++i) { if (vp9_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; if (buf->corrupted) { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Frame reference is corrupt"); } found = 1; break; } } if (!found) vp9_read_frame_size(rb, &width, &height); if (width <= 0 || height <= 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (!valid_ref_frame_img_fmt( ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color space"); } resize_context_buffers(cm, width, height); setup_display_size(cm, rb); if (vp9_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, &cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb, cm->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } cm->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; cm->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; cm->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; } static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { #if CONFIG_ROW_TILE cm->tile_width = vp9_rb_read_literal(rb, 6); cm->tile_height = vp9_rb_read_literal(rb, 6); cm->tile_width = clamp(cm->tile_width, 1, 64) << MI_BLOCK_SIZE_LOG2; cm->tile_height = clamp(cm->tile_height, 1, 64) << MI_BLOCK_SIZE_LOG2; cm->tile_width = MIN(cm->tile_width, cm->mi_cols); cm->tile_height = MIN(cm->tile_height, cm->mi_rows); // Get tile numbers cm->tile_cols = 1; while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; cm->tile_rows = 1; while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; // Read the number of bytes used to store tile size cm->tile_col_size_bytes = vp9_rb_read_literal(rb, 2) + 1; cm->tile_size_bytes = vp9_rb_read_literal(rb, 2) + 1; #else int min_log2_tiles, max_log2_tiles, max_ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tiles, &max_log2_tiles); // columns max_ones = max_log2_tiles - min_log2_tiles; cm->log2_tile_cols = min_log2_tiles; while (max_ones-- && vp9_rb_read_bit(rb)) ++cm->log2_tile_cols; if (cm->log2_tile_cols > 10) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = vp9_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vp9_rb_read_bit(rb); cm->tile_cols = 1 << cm->log2_tile_cols; cm->tile_rows = 1 << cm->log2_tile_rows; cm->tile_width = (mi_cols_aligned_to_sb(cm->mi_cols) >> cm->log2_tile_cols); cm->tile_height = (mi_cols_aligned_to_sb(cm->mi_rows) >> cm->log2_tile_rows); // round to integer multiples of 8 cm->tile_width = mi_cols_aligned_to_sb(cm->tile_width); cm->tile_height = mi_cols_aligned_to_sb(cm->tile_height); #endif } #if CONFIG_ROW_TILE // set mem read function according to the number of bytes used. static INLINE void setup_size_read(int num_bytes, MemRead *read) { *read = mem_get_be32; if (num_bytes == 3) { *read = mem_get_be24; } else if (num_bytes == 2) { *read = mem_get_be16; } else if (num_bytes == 1) { *read = mem_get_be8; } } #endif // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. #if CONFIG_ROW_TILE static void get_tile_buffer(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data, vpx_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer (*tile_buffers)[1024], int tile_size_bytes, int col, int row) { #else static void get_tile_buffer(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data, vpx_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer *buf) { #endif size_t size; #if CONFIG_ROW_TILE size_t copy_size = 0; const uint8_t *copy_data = NULL; // mem read function MemRead read_tile_size; setup_size_read(tile_size_bytes, &read_tile_size); #endif if (!is_last) { #if CONFIG_ROW_TILE if (!read_is_valid(*data, tile_size_bytes, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); // Only read number of bytes in cm->tile_size_bytes. size = read_tile_size(be_data); } else { size = read_tile_size(*data); } if ((size >> (tile_size_bytes * 8 - 1)) == 1) { int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; // Currently, only use tiles in same column as reference tiles. copy_data = tile_buffers[row - offset][col].data; copy_size = tile_buffers[row - offset][col].size; size = 0; } *data += tile_size_bytes; #else if (!read_is_valid(*data, 4, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, 4); size = mem_get_be32(be_data); } else { size = mem_get_be32(*data); } *data += 4; #endif if (size > (size_t)(data_end - *data)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } #if CONFIG_ROW_TILE if (size > 0) { tile_buffers[row][col].data = *data; tile_buffers[row][col].size = size; } else { tile_buffers[row][col].data = copy_data; tile_buffers[row][col].size = copy_size; } #else buf->data = *data; buf->size = size; #endif *data += size; } #if CONFIG_ROW_TILE static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1024]) { VP9_COMMON *const cm = &pbi->common; int r, c; const uint8_t *orig_data = data; const uint8_t *tile_end_col[1024]; size_t tile_col_size; int tile_col_limit = (pbi->dec_tile_col == -1) ? INT_MAX : MIN(pbi->dec_tile_col, tile_cols - 1); int tile_row_limit = (pbi->dec_tile_row == -1) ? INT_MAX : MIN(pbi->dec_tile_row, tile_rows - 1); int tile_col_size_bytes = cm->tile_col_size_bytes; int tile_size_bytes = cm->tile_size_bytes; // tile col size read function MemRead read_tile_col_size; setup_size_read(tile_col_size_bytes, &read_tile_col_size); for (c = 0; c < tile_cols && c <= tile_col_limit; ++c) { if (c < tile_cols - 1) { tile_col_size = read_tile_col_size(data); data += tile_col_size_bytes; tile_end_col[c] = data + tile_col_size; } else { tile_col_size = data_end - data; tile_end_col[c] = data_end; } data += tile_col_size; } data = orig_data; if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) { // Decode a single tile if (tile_col_limit > 0) data = tile_end_col[tile_col_limit - 1]; if (tile_col_limit < tile_cols - 1) data += tile_col_size_bytes; for (r = 0; r <= tile_row_limit; ++r) { // The last tile in the row also has a tile header. So here always set // is_last = 0. const int is_last = 0; tile_buffers[r][tile_col_limit].col = tile_col_limit; get_tile_buffer(tile_end_col[tile_col_limit], is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, tile_col_limit, r); } return; } for (c = 0; c < tile_cols && c <= tile_col_limit; ++c) { if (c > 0) data = tile_end_col[c - 1]; if (c < tile_cols - 1) data += tile_col_size_bytes; for (r = 0; r < tile_rows && r <= tile_row_limit; ++r) { // The last tile in the row also has a tile header. So here always set // is_last = 0. const int is_last = 0; tile_buffers[r][c].col = c; get_tile_buffer(tile_end_col[c], is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, c, r); } } } #else static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1024]) { int r, c; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBuffer *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } #endif static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VP9WorkerInterface *const winterface = vp9_get_worker_interface(); const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; #if CONFIG_ROW_TILE TileBuffer (*tile_buffers)[1024] = pbi->tile_buffers; const int tile_col_limit = (pbi->dec_tile_col == -1) ? INT_MAX : MIN(pbi->dec_tile_col, tile_cols - 1); const int tile_row_limit = (pbi->dec_tile_row == -1) ? INT_MAX : MIN(pbi->dec_tile_row, tile_rows - 1); #else TileBuffer tile_buffers[4][1024]; const int tile_col_limit = INT_MAX; const int tile_row_limit = INT_MAX; #endif int tile_row, tile_col; int mi_row, mi_col; TileData *tile_data = NULL; if (cm->lf.filter_level && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); lf_data->frame_buffer = get_frame_new_buffer(cm); lf_data->cm = cm; vp9_copy(lf_data->planes, pbi->mb.plane); lf_data->stop = 0; lf_data->y_only = 0; vp9_loop_filter_frame_init(cm, cm->lf.filter_level); } #if CONFIG_ROW_TILE assert(tile_rows <= (1 << 10)); assert(tile_cols <= (1 << 10)); #else assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); #endif // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_cols); // Scan the frame data buffer, and get each tile data location as well as its // size. get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); if (pbi->tile_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) { vpx_free(pbi->tile_data); CHECK_MEM_ERROR( cm, pbi->tile_data, vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data)))); pbi->total_tiles = tile_rows * tile_cols; } if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) { TileInfo tile; const TileBuffer *const buf = &tile_buffers[tile_row_limit][tile_col_limit]; tile_data = pbi->tile_data + tile_cols * tile_row_limit + tile_col_limit; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(&tile, tile_data->cm, tile_row_limit, tile_col_limit); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); init_macroblockd(cm, &tile_data->xd); vp9_zero(tile_data->xd.dqcoeff); } else { // Load all tile information into tile_data. for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileInfo tile; const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; if (tile_row > tile_row_limit || tile_col > tile_col_limit) continue; tile_data = pbi->tile_data + tile_cols * tile_row + tile_col; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(&tile, tile_data->cm, tile_row, tile_col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); init_macroblockd(cm, &tile_data->xd); vp9_zero(tile_data->xd.dqcoeff); } } } if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) { TileInfo tile; vp9_tile_init(&tile, cm, tile_row_limit, tile_col_limit); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { tile_data = pbi->tile_data + tile_cols * tile_row_limit + tile_col_limit; vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data->cm, &tile_data->xd, &tile, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, &tile_data->bit_reader, BLOCK_LARGEST); } pbi->mb.corrupted |= tile_data->xd.corrupted; } return data_end; } else { for (tile_row = 0; tile_row < tile_rows; ++tile_row) { TileInfo tile; #if CONFIG_ROW_TILE if (tile_row_limit != INT_MAX && tile_row != tile_row_limit) continue; #else vp9_tile_set_row(&tile, cm, tile_row); #endif for (tile_col = 0; tile_col < tile_cols; ++tile_col) { #if CONFIG_ROW_TILE if (tile_col_limit != INT_MAX && tile_col != tile_col_limit) continue; vp9_tile_init(&tile, cm, tile_row, tile_col); vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); vpx_memset(&cm->above_seg_context[tile.mi_col_start], 0, sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(tile.mi_col_end - tile.mi_col_start)); #else vp9_tile_set_col(&tile, cm, tile_col); #endif for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { const int col = pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; tile_data = pbi->tile_data + tile_cols * tile_row + col; vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MI_BLOCK_SIZE) { /* printf("\n============================================\n"); printf("decode_tiles(): current_video_frame=%d, " "mi_row=%d, mi_col=%d\n", cm->current_video_frame, mi_row, mi_col); */ decode_partition(tile_data->cm, &tile_data->xd, &tile, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, &tile_data->bit_reader, BLOCK_LARGEST); /* printf("tile_data->xd.corrupted=%d\n", tile_data->xd.corrupted); printf("============================================\n"); */ } pbi->mb.corrupted |= tile_data->xd.corrupted; } } #if !CONFIG_INTRABC // Loopfilter one row. if (!pbi->mb.corrupted && cm->lf.filter_level) { const int lf_start = tile.mi_row_start - MI_BLOCK_SIZE; LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (tile.mi_row_end >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = tile.mi_row_end - MI_BLOCK_SIZE;; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } #endif // !CONFIG_INTRABC } } // Loopfilter remaining rows in the frame. if (!pbi->mb.corrupted && cm->lf.filter_level) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } #if CONFIG_ROW_TILE return data_end; #endif // Get last tile data. tile_data = pbi->tile_data + tile_cols * tile_rows - 1; return vp9_reader_find_end(&tile_data->bit_reader); } static int tile_worker_hook(TileWorkerData *const tile_data, const TileInfo *const tile) { int mi_row, mi_col; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data->cm, &tile_data->xd, tile, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64); } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBuffer *const buf1 = (const TileBuffer*)a; const TileBuffer *const buf2 = (const TileBuffer*)b; if (buf1->size < buf2->size) { return 1; } else if (buf1->size == buf2->size) { return 0; } else { return -1; } } // TODO(jingning): Multi-thread tile decoding is not supporting // arbitrary row/column tile numbers yet. static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VP9WorkerInterface *const winterface = vp9_get_worker_interface(); const uint8_t *bit_reader_end = NULL; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int num_workers = MIN(pbi->max_threads & ~1, tile_cols); TileBuffer tile_buffers[1][1024]; int n; int final_worker = -1; assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; int i; // TODO(jzern): Allocate one less worker, as in the current code we only // use num_threads - 1 workers. CHECK_MEM_ERROR(cm, pbi->tile_workers, vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); for (i = 0; i < num_threads; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); CHECK_MEM_ERROR(cm, worker->data1, vpx_memalign(32, sizeof(TileWorkerData))); CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo))); if (i < num_threads - 1 && !winterface->reset(worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { winterface->sync(&pbi->tile_workers[n]); pbi->tile_workers[n].hook = (VP9WorkerHook)tile_worker_hook; } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_mi_cols); // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); // Sort the buffers based on size in descending order. qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers such that per-tile group the largest, and // presumably the most difficult, tile will be decoded in the main thread. // This should help minimize the number of instances where the main thread is // waiting for a worker to complete. { int group_start = 0; while (group_start < tile_cols) { const TileBuffer largest = tile_buffers[0][group_start]; const int group_end = MIN(group_start + num_workers, tile_cols) - 1; memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1, (group_end - group_start) * sizeof(tile_buffers[0][0])); tile_buffers[0][group_end] = largest; group_start = group_end + 1; } } n = 0; while (n < tile_cols) { int i; for (i = 0; i < num_workers && n < tile_cols; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; TileInfo *const tile = (TileInfo*)worker->data2; TileBuffer *const buf = &tile_buffers[0][n]; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(tile, tile_data->cm, 0, buf->col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); init_macroblockd(cm, &tile_data->xd); vp9_zero(tile_data->xd.dqcoeff); worker->had_error = 0; if (i == num_workers - 1 || n == tile_cols - 1) { winterface->execute(worker); } else { winterface->launch(worker); } if (buf->col == tile_cols - 1) { final_worker = i; } ++n; } for (; i > 0; --i) { VP9Worker *const worker = &pbi->tile_workers[i - 1]; pbi->mb.corrupted |= !winterface->sync(worker); } if (final_worker > -1) { TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[final_worker].data1; bit_reader_end = vp9_reader_find_end(&tile_data->bit_reader); final_worker = -1; } } return bit_reader_end; } static void error_handler(void *data) { VP9_COMMON *const cm = (VP9_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } int vp9_read_sync_code(struct vp9_read_bit_buffer *const rb) { return vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 && vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 && vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2; } BITSTREAM_PROFILE vp9_read_profile(struct vp9_read_bit_buffer *rb) { int profile = vp9_rb_read_bit(rb); profile |= vp9_rb_read_bit(rb) << 1; if (profile > 2) profile += vp9_rb_read_bit(rb); return (BITSTREAM_PROFILE) profile; } static void read_bitdepth_colorspace_sampling( VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = vp9_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 1; #endif } else { cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } cm->color_space = vp9_rb_read_literal(rb, 3); if (cm->color_space != VPX_CS_SRGB) { vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = vp9_rb_read_bit(rb); cm->subsampling_y = vp9_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (vp9_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (vp9_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static size_t read_uncompressed_header(VP9Decoder *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; size_t sz; int i; #if CONFIG_MULTI_REF cm->last3_frame_type = cm->last2_frame_type; cm->last2_frame_type = cm->last_frame_type; #endif // CONFIG_MULTI_REF cm->last_frame_type = cm->frame_type; if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = vp9_read_profile(rb); if (cm->profile >= MAX_PROFILES) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); cm->show_existing_frame = vp9_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)]; if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); ref_cnt_fb(cm->frame_bufs, &cm->new_fb_idx, frame_to_show); pbi->refresh_frame_flags = 0; cm->lf.filter_level = 0; cm->show_frame = 1; return 0; } cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb); cm->show_frame = vp9_rb_read_bit(rb); cm->error_resilient_mode = vp9_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); #if CONFIG_MULTI_REF // TODO(zoeliu): When current frame is a KEY_FRAME, after the decoding of // the frame, LAST2_FRAME should not get refreshed. However, if so, error // will occur when decoding the next INTER_FRAME, during // read_uncompressed_header(), specifically, during // set_frame_size_with_refs(). This needs to be further investigated and // fixed in the right way. #endif // COFNIG_MULTI_REF pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = -1; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); pbi->need_resync = 0; } else { cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vp9_rb_read_literal(rb, 2); if (cm->intra_only) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); if (cm->profile > PROFILE_0) { read_bitdepth_colorspace_sampling(cm, rb); } else { // NOTE: The intra-only frame header does not include the specification // of either the color format or color sub-sampling in profile 0. VP9 // specifies that the default color space should be YUV 4:2:0 in this // case (normative). cm->color_space = VPX_CS_BT_601; cm->subsampling_y = cm->subsampling_x = 1; cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); pbi->need_resync = 0; } else { pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES); for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = vp9_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &cm->frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = vp9_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_VP9_HIGHBITDEPTH vp9_setup_scale_factors_for_frame(&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else vp9_setup_scale_factors_for_frame(&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif if (vp9_is_scaled(&ref_buf->sf)) vp9_extend_frame_borders(ref_buf->buf); } } } #if CONFIG_VP9_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif if (pbi->need_resync) { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vp9_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } // This flag will be overridden by the call to vp9_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = vp9_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); if (frame_is_intra_only(cm) || cm->error_resilient_mode) { #if CONFIG_ROW_TILE vp9_dec_setup_past_independence(cm, pbi->dec_tile_row, pbi->dec_tile_col); #else vp9_setup_past_independence(cm); #endif } setup_loopfilter(cm, rb); setup_quantization(cm, &pbi->mb, rb); setup_segmentation(&cm->seg, rb); #if CONFIG_QCTX_TPROBS if (frame_is_intra_only(cm) || cm->error_resilient_mode) { vp9_default_coef_probs(cm); if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->reset_frame_context == 3) { // Reset all frame contexts. for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = cm->fc; } else if (cm->reset_frame_context == 2) { // Reset only the frame context specified in the frame header. cm->frame_contexts[cm->frame_context_idx] = cm->fc; } } #endif // CONFIG_QCTX_TPROBS setup_tile_info(cm, rb); sz = vp9_rb_read_literal(rb, 16); if (sz == 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } #if CONFIG_EXT_TX static void read_ext_tx_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) { for (j = TX_4X4; j <= TX_16X16; ++j) for (i = 0; i < EXT_TX_TYPES - 1; ++i) vp9_diff_update_prob(r, &fc->ext_tx_prob[j][i]); #if CONFIG_WAVELETS for (; j < TX_SIZES; ++j) for (i = 0; i < EXT_TX_TYPES_LARGE - 1; ++i) vp9_diff_update_prob(r, &fc->ext_tx_prob[j][i]); #endif } } #endif // CONFIG_EXT_TX #if CONFIG_SUPERTX static void read_supertx_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { vp9_diff_update_prob(r, &fc->supertx_prob[i][j]); } } } } #endif // CONFIG_SUPERTX #if CONFIG_NEW_INTER static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) { for (j = 0; j < INTER_MODE_CONTEXTS; ++j) for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) vp9_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i]); } } #endif // CONFIG_NEW_INTER #if CONFIG_GLOBAL_MOTION static void read_global_motion_params(Global_Motion_Params *params, vp9_prob *probs, vp9_reader *r) { GLOBAL_MOTION_TYPE gmtype = vp9_read_tree(r, vp9_global_motion_types_tree, probs); params->gmtype = gmtype; switch (gmtype) { case GLOBAL_ZERO: break; case GLOBAL_TRANSLATION: params->mv.as_mv.col = vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS); params->mv.as_mv.row = vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS); break; case GLOBAL_ROTZOOM: params->mv.as_mv.col = vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS); params->mv.as_mv.row = vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS); params->zoom = vp9_read_primitive_symmetric(r, ABS_ZOOM_BITS); params->rotation = vp9_read_primitive_symmetric(r, ABS_ROTATION_BITS); break; default: assert(0); } } static void read_global_motion(VP9_COMMON *cm, vp9_reader *r) { int frame, i; vpx_memset(cm->num_global_motion, 0, sizeof(cm->num_global_motion)); vpx_memset(cm->global_motion, 0, sizeof(cm->global_motion)); for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { cm->num_global_motion[frame] = 1; for (i = 0; i < cm->num_global_motion[frame]; ++i) { read_global_motion_params( cm->global_motion[frame], cm->fc.global_motion_types_prob, r); /* printf("Dec Ref %d [%d]: %d %d %d %d\n", frame, cm->current_video_frame, cm->global_motion[frame][i].zoom, cm->global_motion[frame][i].rotation, cm->global_motion[frame][i].mv.as_mv.col, cm->global_motion[frame][i].mv.as_mv.row); */ } } } #endif // CONFIG_GLOBAL_MOTION static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data, size_t partition_size) { VP9_COMMON *const cm = &pbi->common; #if !CONFIG_TX_SKIP || CONFIG_SUPERTX MACROBLOCKD *const xd = &pbi->mb; #endif FRAME_CONTEXT *const fc = &cm->fc; vp9_reader r; int k; if (vp9_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); #if CONFIG_TX_SKIP cm->tx_mode = read_tx_mode(&r); #else cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); #endif if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < SKIP_CONTEXTS; ++k) vp9_diff_update_prob(&r, &fc->skip_probs[k]); #if CONFIG_SR_MODE for (k = 0; k < SR_CONTEXTS; ++k) vp9_diff_update_prob(&r, &fc->sr_probs[k]); #if SR_USE_MULTI_F read_sr_usfilter_probs(fc, &r); #endif // SR_USE_MULTI_F #endif // CONFIG_SR_MODE if (!frame_is_intra_only(cm)) { nmv_context *const nmvc = &fc->nmvc; int i, j; read_inter_mode_probs(fc, &r); #if CONFIG_NEW_INTER read_inter_compound_mode_probs(fc, &r); #endif // CONFIG_NEW_INTER #if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES read_dq_profile_probs(fc, &r); #endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); cm->reference_mode = read_frame_reference_mode(cm, &r); if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); #if CONFIG_EXT_PARTITION for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[0][i]); for (j = 1; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); #else for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); #endif read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); #if CONFIG_EXT_TX read_ext_tx_probs(fc, &r); #endif #if CONFIG_SUPERTX if (!xd->lossless) read_supertx_probs(fc, &r); #endif #if CONFIG_TX_SKIP for (i = 0; i < 2; i++) vp9_diff_update_prob(&r, &fc->y_tx_skip_prob[i]); for (i = 0; i < 2; i++) vp9_diff_update_prob(&r, &fc->uv_tx_skip_prob[i]); #endif #if CONFIG_COPY_MODE for (j = 0; j < COPY_MODE_CONTEXTS; j++) { for (i = 0; i < 1; i++) vp9_diff_update_prob(&r, &fc->copy_mode_probs_l2[j][i]); for (i = 0; i < COPY_MODE_COUNT - 2; i++) vp9_diff_update_prob(&r, &fc->copy_mode_probs[j][i]); } #endif #if CONFIG_INTERINTRA if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed(i)) { vp9_diff_update_prob(&r, &fc->interintra_prob[i]); } } #if CONFIG_WEDGE_PARTITION for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed(i) && get_wedge_bits(i)) vp9_diff_update_prob(&r, &fc->wedge_interintra_prob[i]); } #endif // CONFIG_WEDGE_PARTITION } #endif // CONFIG_INTERINTRA #if CONFIG_WEDGE_PARTITION if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { if (get_wedge_bits(i)) vp9_diff_update_prob(&r, &fc->wedge_interinter_prob[i]); } } #endif // CONFIG_WEDGE_PARTITION #if CONFIG_GLOBAL_MOTION read_global_motion(cm, &r); #endif // CONFIG_GLOBAL_MOTION } #if CONFIG_INTRABC if (frame_is_intra_only(cm)) cm->allow_intrabc_mode = vp9_read_bit(&r); #endif // CONFIG_INTRABC #if CONFIG_PALETTE if (frame_is_intra_only(cm)) cm->allow_palette_mode = vp9_read_bit(&r); #endif // CONFIG_PALETTE return vp9_reader_has_error(&r); } void vp9_init_dequantizer(VP9_COMMON *cm) { int q; #if CONFIG_NEW_QUANT int dq; #endif // CONFIG_NEW_QUANT for (q = 0; q < QINDEX_RANGE; q++) { int b; cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[q][1] = vp9_ac_quant(q, 0, cm->bit_depth); cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { for (b = 0; b < COEF_BANDS; ++b) { vp9_get_dequant_val_nuq( cm->y_dequant[q][b != 0], q == 0, b, cm->y_dequant_val_nuq[dq][q][b], NULL, dq); vp9_get_dequant_val_nuq( cm->uv_dequant[q][b != 0], q == 0, b, cm->uv_dequant_val_nuq[dq][q][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT #if CONFIG_TX_SKIP cm->y_dequant_pxd[q][0] = cm->y_dequant[q][PXD_QUANT_INDEX]; cm->y_dequant_pxd[q][1] = cm->y_dequant[q][PXD_QUANT_INDEX]; cm->uv_dequant_pxd[q][0] = cm->uv_dequant[q][PXD_QUANT_INDEX]; cm->uv_dequant_pxd[q][1] = cm->uv_dequant[q][PXD_QUANT_INDEX]; #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq ++) { for (b = 0; b < COEF_BANDS; ++b) { vp9_get_dequant_val_nuq( cm->y_dequant_pxd[q][b != 0], q == 0, b, cm->y_dequant_val_nuq_pxd[dq][q][b], NULL, dq); vp9_get_dequant_val_nuq( cm->uv_dequant_pxd[q][b != 0], q == 0, b, cm->uv_dequant_val_nuq_pxd[dq][q][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT #endif // CONFIG_TX_SKIP (void) b; } } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const VP9_COMMON *const cm) { FRAME_COUNTS zero_counts; vp9_zero(zero_counts); assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); #if CONFIG_SR_MODE assert(!memcmp(&cm->counts.sr, &zero_counts.sr, sizeof(cm->counts.sr))); #if SR_USE_MULTI_F assert(!memcmp(cm->counts.sr_usfilters, zero_counts.sr_usfilters, sizeof(cm->counts.sr_usfilters))); #endif // SR_USE_MULTI_F #endif // CONFIG_SR_MODE #if CONFIG_EXT_TX assert(!memcmp(cm->counts.ext_tx, zero_counts.ext_tx, sizeof(cm->counts.ext_tx))); #endif // CONFIG_EXT_TX #if CONFIG_NEW_INTER assert(!memcmp(cm->counts.inter_compound_mode, zero_counts.inter_compound_mode, sizeof(cm->counts.inter_compound_mode))); #endif // CONFIG_NEW_INTER } #endif // NDEBUG static struct vp9_read_bit_buffer* init_read_bit_buffer( VP9Decoder *pbi, struct vp9_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t *clear_data /* buffer size MAX_VP9_HEADER_SIZE */) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct vp9_read_bit_buffer rb = { NULL, NULL, 0, NULL, 0}; uint8_t clear_data[MAX_VP9_HEADER_SIZE]; const size_t first_partition_size = read_uncompressed_header(pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); const int tile_rows = cm->tile_rows; const int tile_cols = cm->tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; #if CONFIG_GLOBAL_MOTION xd->global_motion = cm->global_motion; #endif // CONFIG_GLOBAL_MOTION if (!first_partition_size) { // showing a frame directly *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); return; } data += vp9_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); init_macroblockd(cm, &pbi->mb); if (!cm->error_resilient_mode) set_prev_mi(cm); else cm->prev_mi = NULL; setup_plane_dequants(cm, xd, cm->base_qindex); vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); cm->fc = cm->frame_contexts[cm->frame_context_idx]; vp9_zero(cm->counts); vp9_zero(xd->dqcoeff); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); // TODO(jzern): remove frame_parallel_decoding_mode restriction for // single-frame tile decoding. if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1 && cm->frame_parallel_decoding_mode) { *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!xd->corrupted) { // If multiple threads are used to decode tiles, then we use those threads // to do parallel loopfiltering. vp9_loop_filter_frame_mt(new_fb, pbi, cm, cm->lf.filter_level, 0); } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } #if CONFIG_LOOP_POSTFILTER vp9_loop_bilateral_init(&cm->lf_info, cm->lf.bilateral_level, cm->frame_type == KEY_FRAME); if (cm->lf_info.bilateral_used) { vp9_loop_bilateral_rows(new_fb, cm, 0, cm->mi_rows, 0); } #endif // CONFIG_LOOP_POSTFILTER new_fb->corrupted |= xd->corrupted; if (!new_fb->corrupted) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } if (cm->refresh_frame_context) cm->frame_contexts[cm->frame_context_idx] = cm->fc; }