/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_onyxc_int.h" const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = { DCT_DCT, // DC ADST_DCT, // V DCT_ADST, // H DCT_DCT, // D45 ADST_ADST, // D135 ADST_DCT, // D117 DCT_ADST, // D153 DCT_ADST, // D207 ADST_DCT, // D63 ADST_ADST, // TM }; // This serves as a wrapper function, so that all the prediction functions // can be unified and accessed as a pointer array. Note that the boundary // above and left are not necessarily used all the time. #define intra_pred_sized(type, size) \ void vp9_##type##_predictor_##size##x##size##_c(uint8_t *dst, \ ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ type##_predictor(dst, stride, size, above, left); \ } #if CONFIG_VP9_HIGHBITDEPTH #define intra_pred_highbd_sized(type, size) \ void vp9_highbd_##type##_predictor_##size##x##size##_c( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ highbd_##type##_predictor(dst, stride, size, above, left, bd); \ } #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_TX64X64 #if CONFIG_VP9_HIGHBITDEPTH #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4) \ intra_pred_sized(type, 8) \ intra_pred_sized(type, 16) \ intra_pred_sized(type, 32) \ intra_pred_sized(type, 64) \ intra_pred_highbd_sized(type, 4) \ intra_pred_highbd_sized(type, 8) \ intra_pred_highbd_sized(type, 16) \ intra_pred_highbd_sized(type, 32) \ intra_pred_highbd_sized(type, 64) #else #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4) \ intra_pred_sized(type, 8) \ intra_pred_sized(type, 16) \ intra_pred_sized(type, 32) \ intra_pred_sized(type, 64) #endif // CONFIG_VP9_HIGHBITDEPTH #else // CONFIG_TX64X64 #if CONFIG_VP9_HIGHBITDEPTH #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4) \ intra_pred_sized(type, 8) \ intra_pred_sized(type, 16) \ intra_pred_sized(type, 32) \ intra_pred_highbd_sized(type, 4) \ intra_pred_highbd_sized(type, 8) \ intra_pred_highbd_sized(type, 16) \ intra_pred_highbd_sized(type, 32) #else #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4) \ intra_pred_sized(type, 8) \ intra_pred_sized(type, 16) \ intra_pred_sized(type, 32) #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_TX64X64 #if CONFIG_VP9_HIGHBITDEPTH static INLINE void highbd_d207_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) above; (void) bd; // First column. for (r = 0; r < bs - 1; ++r) { dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1], 1); } dst[(bs - 1) * stride] = left[bs - 1]; dst++; // Second column. for (r = 0; r < bs - 2; ++r) { dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1] * 2 + left[r + 2], 2); } dst[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left[bs - 2] + left[bs - 1] * 3, 2); dst[(bs - 1) * stride] = left[bs - 1]; dst++; // Rest of last row. for (c = 0; c < bs - 2; ++c) dst[(bs - 1) * stride + c] = left[bs - 1]; for (r = bs - 2; r >= 0; --r) { for (c = 0; c < bs - 2; ++c) dst[r * stride + c] = dst[(r + 1) * stride + c - 2]; } } static INLINE void highbd_d63_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) left; (void) bd; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { dst[c] = r & 1 ? ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1] * 2 + above[r/2 + c + 2], 2) : ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1], 1); } dst += stride; } } static INLINE void highbd_d45_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) left; (void) bd; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { dst[c] = r + c + 2 < bs * 2 ? ROUND_POWER_OF_TWO(above[r + c] + above[r + c + 1] * 2 + above[r + c + 2], 2) : above[bs * 2 - 1]; } dst += stride; } } static INLINE void highbd_d117_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) bd; // first row for (c = 0; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c], 1); dst += stride; // second row dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst += stride; // the rest of first col dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 3; r < bs; ++r) dst[(r - 2) * stride] = ROUND_POWER_OF_TWO(left[r - 3] + left[r - 2] * 2 + left[r - 1], 2); // the rest of the block for (r = 2; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-2 * stride + c - 1]; dst += stride; } } static INLINE void highbd_d135_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) bd; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-stride + c - 1]; dst += stride; } } static INLINE void highbd_d153_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; (void) bd; dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0], 1); for (r = 1; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 1] + left[r], 1); dst++; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst++; for (c = 0; c < bs - 2; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c] * 2 + above[c + 1], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 0; c < bs - 2; c++) dst[c] = dst[-stride + c - 2]; dst += stride; } } static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r; (void) left; (void) bd; for (r = 0; r < bs; r++) { vpx_memcpy(dst, above, bs * sizeof(uint16_t)); dst += stride; } } static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r; (void) above; (void) bd; for (r = 0; r < bs; r++) { vpx_memset16(dst, left[r], bs); dst += stride; } } static INLINE void highbd_tm_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r, c; int ytop_left = above[-1]; (void) bd; for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) dst[c] = clip_pixel_highbd(left[r] + above[c] - ytop_left, bd); dst += stride; } } static INLINE void highbd_dc_128_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int r; (void) above; (void) left; for (r = 0; r < bs; r++) { vpx_memset16(dst, 128 << (bd - 8), bs); dst += stride; } } static INLINE void highbd_dc_left_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; (void) above; (void) bd; for (i = 0; i < bs; i++) sum += left[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset16(dst, expected_dc, bs); dst += stride; } } static INLINE void highbd_dc_top_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; (void) left; (void) bd; for (i = 0; i < bs; i++) sum += above[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset16(dst, expected_dc, bs); dst += stride; } } static INLINE void highbd_dc_predictor(uint16_t *dst, ptrdiff_t stride, int bs, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; const int count = 2 * bs; (void) bd; for (i = 0; i < bs; i++) { sum += above[i]; sum += left[i]; } expected_dc = (sum + (count >> 1)) / count; for (r = 0; r < bs; r++) { vpx_memset16(dst, expected_dc, bs); dst += stride; } } #endif // CONFIG_VP9_HIGHBITDEPTH static INLINE void d207_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; (void) above; // first column for (r = 0; r < bs - 1; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1], 1); dst[(bs - 1) * stride] = left[bs - 1]; dst++; // second column for (r = 0; r < bs - 2; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1] * 2 + left[r + 2], 2); dst[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left[bs - 2] + left[bs - 1] * 3, 2); dst[(bs - 1) * stride] = left[bs - 1]; dst++; // rest of last row for (c = 0; c < bs - 2; ++c) dst[(bs - 1) * stride + c] = left[bs - 1]; for (r = bs - 2; r >= 0; --r) for (c = 0; c < bs - 2; ++c) dst[r * stride + c] = dst[(r + 1) * stride + c - 2]; } intra_pred_allsizes(d207) static INLINE void d63_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; (void) left; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dst[c] = r & 1 ? ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1] * 2 + above[r/2 + c + 2], 2) : ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1], 1); dst += stride; } } intra_pred_allsizes(d63) static INLINE void d45_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; (void) left; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dst[c] = r + c + 2 < bs * 2 ? ROUND_POWER_OF_TWO(above[r + c] + above[r + c + 1] * 2 + above[r + c + 2], 2) : above[bs * 2 - 1]; dst += stride; } } intra_pred_allsizes(d45) static INLINE void d117_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; // first row for (c = 0; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c], 1); dst += stride; // second row dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst += stride; // the rest of first col dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 3; r < bs; ++r) dst[(r - 2) * stride] = ROUND_POWER_OF_TWO(left[r - 3] + left[r - 2] * 2 + left[r - 1], 2); // the rest of the block for (r = 2; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-2 * stride + c - 1]; dst += stride; } } intra_pred_allsizes(d117) static INLINE void d135_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-stride + c - 1]; dst += stride; } } intra_pred_allsizes(d135) static INLINE void d153_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0], 1); for (r = 1; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 1] + left[r], 1); dst++; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst++; for (c = 0; c < bs - 2; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c] * 2 + above[c + 1], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 0; c < bs - 2; c++) dst[c] = dst[-stride + c - 2]; dst += stride; } } intra_pred_allsizes(d153) static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; (void) left; for (r = 0; r < bs; r++) { vpx_memcpy(dst, above, bs); dst += stride; } } intra_pred_allsizes(v) static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; (void) above; for (r = 0; r < bs; r++) { vpx_memset(dst, left[r], bs); dst += stride; } } intra_pred_allsizes(h) static INLINE void tm_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; int ytop_left = above[-1]; for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) dst[c] = clip_pixel(left[r] + above[c] - ytop_left); dst += stride; } } intra_pred_allsizes(tm) static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; (void) above; (void) left; for (r = 0; r < bs; r++) { vpx_memset(dst, 128, bs); dst += stride; } } intra_pred_allsizes(dc_128) static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; (void) above; for (i = 0; i < bs; i++) sum += left[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc_left) static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; (void) left; for (i = 0; i < bs; i++) sum += above[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc_top) static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; const int count = 2 * bs; for (i = 0; i < bs; i++) { sum += above[i]; sum += left[i]; } expected_dc = (sum + (count >> 1)) / count; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc) #undef intra_pred_allsizes typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left); static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; static intra_pred_fn dc_pred[2][2][TX_SIZES]; #if CONFIG_VP9_HIGHBITDEPTH typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd); static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES]; static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES]; #endif // CONFIG_VP9_HIGHBITDEPTH void vp9_init_intra_predictors() { #if CONFIG_TX64X64 #define INIT_ALL_SIZES(p, type) \ p[TX_4X4] = vp9_##type##_predictor_4x4; \ p[TX_8X8] = vp9_##type##_predictor_8x8; \ p[TX_16X16] = vp9_##type##_predictor_16x16; \ p[TX_32X32] = vp9_##type##_predictor_32x32; \ p[TX_64X64] = vp9_##type##_predictor_64x64 #else #define INIT_ALL_SIZES(p, type) \ p[TX_4X4] = vp9_##type##_predictor_4x4; \ p[TX_8X8] = vp9_##type##_predictor_8x8; \ p[TX_16X16] = vp9_##type##_predictor_16x16; \ p[TX_32X32] = vp9_##type##_predictor_32x32 #endif INIT_ALL_SIZES(pred[V_PRED], v); INIT_ALL_SIZES(pred[H_PRED], h); INIT_ALL_SIZES(pred[D207_PRED], d207); INIT_ALL_SIZES(pred[D45_PRED], d45); INIT_ALL_SIZES(pred[D63_PRED], d63); INIT_ALL_SIZES(pred[D117_PRED], d117); INIT_ALL_SIZES(pred[D135_PRED], d135); INIT_ALL_SIZES(pred[D153_PRED], d153); INIT_ALL_SIZES(pred[TM_PRED], tm); INIT_ALL_SIZES(dc_pred[0][0], dc_128); INIT_ALL_SIZES(dc_pred[0][1], dc_top); INIT_ALL_SIZES(dc_pred[1][0], dc_left); INIT_ALL_SIZES(dc_pred[1][1], dc); #if CONFIG_VP9_HIGHBITDEPTH INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207); INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45); INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63); INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); #endif // CONFIG_VP9_HIGHBITDEPTH #undef intra_pred_allsizes } #if CONFIG_FILTERINTRA static const int taps4_4[10][4] = { {735, 881, -537, -54}, {1005, 519, -488, -11}, {383, 990, -343, -6}, {442, 805, -542, 319}, {658, 616, -133, -116}, {875, 442, -141, -151}, {386, 741, -23, -80}, {390, 1027, -446, 51}, {679, 606, -523, 262}, {903, 922, -778, -23} }; static const int taps4_8[10][4] = { {648, 803, -444, 16}, {972, 620, -576, 7}, {561, 967, -499, -5}, {585, 762, -468, 144}, {596, 619, -182, -9}, {895, 459, -176, -153}, {557, 722, -126, -129}, {601, 839, -523, 105}, {562, 709, -499, 251}, {803, 872, -695, 43} }; static const int taps4_16[10][4] = { {423, 728, -347, 111}, {963, 685, -665, 23}, {281, 1024, -480, 216}, {640, 596, -437, 78}, {429, 669, -259, 99}, {740, 646, -415, 23}, {568, 771, -346, 40}, {404, 833, -486, 209}, {398, 712, -423, 307}, {939, 935, -887, 17} }; static const int taps4_32[10][4] = { {477, 737, -393, 150}, {881, 630, -546, 67}, {506, 984, -443, -20}, {114, 459, -270, 528}, {433, 528, 14, 3}, {837, 470, -301, -30}, {181, 777, 89, -107}, {-29, 716, -232, 259}, {589, 646, -495, 255}, {740, 884, -728, 77} }; #endif // CONFIG_FILTERINTRA #if CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors_highbd(const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane, int bd) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED_ARRAY(16, uint16_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 128 + 16); #endif uint16_t *above_row = above_data + 16; const uint16_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; int base = 128 << (bd - 8); // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // left if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } else { // TODO(Peter): this value should probably change for high bitdepth vpx_memset16(left_col, base + 1, bs); } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint16_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs * sizeof(uint16_t)); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } // TODO(Peter) this value should probably change for high bitdepth above_row[-1] = left_available ? above_ref[-1] : (base+1); } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs * sizeof(uint16_t)); else vpx_memset16(above_row + bs, above_row[bs - 1], bs); // TODO(Peter): this value should probably change for high bitdepth above_row[-1] = left_available ? above_ref[-1] : (base+1); } } } else { vpx_memset16(above_row, base - 1, bs * 2); // TODO(Peter): this value should probably change for high bitdepth above_row[-1] = base - 1; } // predict if (mode == DC_PRED) { dc_pred_high[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col, xd->bd); } else { pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, xd->bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane) { int i; DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16); #endif uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_INTRABC assert(!is_intrabc_mode(mode)); #endif // CONFIG_INTRABC // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; vpx_memset(left_col, 129, 64); // left if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint8_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } above_row[-1] = left_available ? above_ref[-1] : 129; } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs); else vpx_memset(above_row + bs, above_row[bs - 1], bs); above_row[-1] = left_available ? above_ref[-1] : 129; } } } else { vpx_memset(above_row, 127, bs * 2); above_row[-1] = 127; } // predict if (mode == DC_PRED) { dc_pred[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); } } #if CONFIG_FILTERINTRA #if CONFIG_VP9_HIGHBITDEPTH static void filter_intra_predictors_4tap_highbd(uint16_t *ypred_ptr, int y_stride, int bs, const uint16_t *yabove_row, const uint16_t *yleft_col, int mode, int bd) { const int prec_bits = 10; const int round_val = (1 << (prec_bits - 1)) - 1; int k, r, c; #if CONFIG_TX64X64 int pred[65][129]; #else int pred[33][65]; #endif int mean, ipred; const int c1 = (bs >= 32) ? taps4_32[mode][0] : ((bs >= 16) ? taps4_16[mode][0] : ((bs >= 8) ? taps4_8[mode][0] : taps4_4[mode][0])); const int c2 = (bs >= 32) ? taps4_32[mode][1] : ((bs >= 16) ? taps4_16[mode][1] : ((bs >= 8) ? taps4_8[mode][1] : taps4_4[mode][1])); const int c3 = (bs >= 32) ? taps4_32[mode][2] : ((bs >= 16) ? taps4_16[mode][2] : ((bs >= 8) ? taps4_8[mode][2] : taps4_4[mode][2])); const int c4 = (bs >= 32) ? taps4_32[mode][3] : ((bs >= 16) ? taps4_16[mode][3] : ((bs >= 8) ? taps4_8[mode][3] : taps4_4[mode][3])); k = 0; mean = 0; while (k < bs) { mean = mean + (int)yleft_col[k]; mean = mean + (int)yabove_row[k]; k++; } mean = (mean + bs) / (2 * bs); for (r = 0; r < bs; r++) pred[r + 1][0] = (int)yleft_col[r] - mean; for (c = 0; c < 2 * bs + 1; c++) pred[0][c] = (int)yabove_row[c - 1] - mean; for (r = 1; r < bs + 1; r++) for (c = 1; c < 2 * bs + 1 - r; c++) { ipred = c1 * pred[r - 1][c] + c2 * pred[r][c - 1] + c3 * pred[r - 1][c - 1] + c4 * pred[r - 1][c + 1]; pred[r][c] = ipred < 0 ? -((-ipred + round_val) >> prec_bits) : ((ipred + round_val) >> prec_bits); } for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) { ipred = pred[r + 1][c + 1] + mean; ypred_ptr[c] = clip_pixel_highbd(ipred, bd); } ypred_ptr += y_stride; } } static void build_filter_intra_predictors_highbd( const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane, int bd) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED_ARRAY(16, uint16_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 128 + 16); #endif uint16_t *above_row = above_data + 16; const uint16_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; int base = 128 << (bd - 8); // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // left if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } else { vpx_memset16(left_col, base + 1, bs); } if (up_available) { const uint16_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs * sizeof(uint16_t)); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } // TODO(Peter) this value should probably change for high bitdepth above_row[-1] = left_available ? above_ref[-1] : (base + 1); } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs * sizeof(uint16_t)); else vpx_memset16(above_row + bs, above_row[bs - 1], bs); // TODO(Peter): this value should probably change for high bitdepth above_row[-1] = left_available ? above_ref[-1] : (base+1); } } } else { vpx_memset16(above_row, base - 1, bs * 2); // TODO(Peter): this value should probably change for high bitdepth above_row[-1] = base - 1; } // predict filter_intra_predictors_4tap_highbd(dst, dst_stride, bs, const_above_row, left_col, mode, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH static void filter_intra_predictors_4tap(uint8_t *ypred_ptr, int y_stride, int bs, const uint8_t *yabove_row, const uint8_t *yleft_col, int mode) { const int prec_bits = 10; const int round_val = (1 << (prec_bits - 1)) - 1; int k, r, c; #if CONFIG_TX64X64 int pred[65][129]; #else int pred[33][65]; #endif int mean, ipred; const int c1 = (bs >= 32) ? taps4_32[mode][0] : ((bs >= 16) ? taps4_16[mode][0] : ((bs >= 8) ? taps4_8[mode][0] : taps4_4[mode][0])); const int c2 = (bs >= 32) ? taps4_32[mode][1] : ((bs >= 16) ? taps4_16[mode][1] : ((bs >= 8) ? taps4_8[mode][1] : taps4_4[mode][1])); const int c3 = (bs >= 32) ? taps4_32[mode][2] : ((bs >= 16) ? taps4_16[mode][2] : ((bs >= 8) ? taps4_8[mode][2] : taps4_4[mode][2])); const int c4 = (bs >= 32) ? taps4_32[mode][3] : ((bs >= 16) ? taps4_16[mode][3] : ((bs >= 8) ? taps4_8[mode][3] : taps4_4[mode][3])); k = 0; mean = 0; while (k < bs) { mean = mean + (int)yleft_col[k]; mean = mean + (int)yabove_row[k]; k++; } mean = (mean + bs) / (2 * bs); for (r = 0; r < bs; r++) pred[r + 1][0] = (int)yleft_col[r] - mean; for (c = 0; c < 2 * bs + 1; c++) pred[0][c] = (int)yabove_row[c - 1] - mean; for (r = 1; r < bs + 1; r++) for (c = 1; c < 2 * bs + 1 - r; c++) { ipred = c1 * pred[r - 1][c] + c2 * pred[r][c - 1] + c3 * pred[r - 1][c - 1] + c4 * pred[r - 1][c + 1]; pred[r][c] = ipred < 0 ? -((-ipred + round_val) >> prec_bits) : ((ipred + round_val) >> prec_bits); } for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) { ipred = pred[r + 1][c + 1] + mean; ypred_ptr[c] = clip_pixel(ipred); } ypred_ptr += y_stride; } } static void build_filter_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane) { int i; DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16); #endif uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // left if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } else { vpx_memset(left_col, 129, 64); } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint8_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } above_row[-1] = left_available ? above_ref[-1] : 129; } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs); else vpx_memset(above_row + bs, above_row[bs - 1], bs); above_row[-1] = left_available ? above_ref[-1] : 129; } } } else { vpx_memset(above_row, 127, bs * 2); above_row[-1] = 127; } // predict filter_intra_predictors_4tap(dst, dst_stride, bs, const_above_row, left_col, mode); } #endif // CONFIG_FILTERINTRA void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in, TX_SIZE tx_size, PREDICTION_MODE mode, #if CONFIG_FILTERINTRA int filterbit, #endif const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, int aoff, int loff, int plane) { const int bwl = bwl_in - tx_size; const int wmask = (1 << bwl) - 1; const int have_top = (block_idx >> bwl) || xd->up_available; const int have_left = (block_idx & wmask) || xd->left_available; const int have_right = ((block_idx & wmask) != wmask); const int x = aoff * 4; const int y = loff * 4; #if CONFIG_FILTERINTRA const int filterflag = is_filter_allowed(mode) && is_filter_enabled(tx_size) && filterbit; #endif // CONFIG_FILTERINTRA assert(bwl >= 0); #if CONFIG_FILTERINTRA if (!filterflag) { #endif // CONFIG_FILTERINTRA #if CONFIG_PALETTE if (xd->mi[0].src_mi->mbmi.palette_enabled[plane !=0]) { int bs = 4 * (1 << tx_size); int stride = 4 * (1 << bwl_in); int r, c; uint8_t *map = NULL; #if CONFIG_VP9_HIGHBITDEPTH uint16_t *palette = xd->mi[0].src_mi->mbmi.palette_colors + plane * PALETTE_MAX_SIZE; #else uint8_t *palette = xd->mi[0].src_mi->mbmi.palette_colors + plane * PALETTE_MAX_SIZE; #endif // CONFIG_VP9_HIGHBITDEPTH if (xd->plane[1].subsampling_x || xd->plane[1].subsampling_y) map = xd->plane[plane != 0].color_index_map; else map = xd->plane[0].color_index_map; for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; } else { #endif // CONFIG_VP9_HIGHBITDEPTH dst[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } return; } #endif // CONFIG_PALETTE #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_intra_predictors_highbd(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane); #if CONFIG_FILTERINTRA } else { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_filter_intra_predictors_highbd(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH build_filter_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane); } #endif } #if CONFIG_INTERINTRA static INLINE TX_SIZE blocklen_to_txsize(int bs) { switch (bs) { case 4: return TX_4X4; break; case 8: return TX_8X8; break; case 16: return TX_16X16; break; case 32: return TX_32X32; break; case 64: case 128: default: #if CONFIG_TX64X64 return TX_64X64; #else return TX_32X32; #endif // CONFIG_TX64X64 break; } } static void combine_interintra(PREDICTION_MODE mode, #if CONFIG_WEDGE_PARTITION int use_wedge_interintra, int wedge_index, BLOCK_SIZE bsize, #endif // CONFIG_WEDGE_PARTITION BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, uint8_t *interpred, int interstride, uint8_t *intrapred, int intrastride) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; static const int weights1d[64] = { 128, 125, 122, 119, 116, 114, 111, 109, 107, 105, 103, 101, 99, 97, 96, 94, 93, 91, 90, 89, 88, 86, 85, 84, 83, 82, 81, 81, 80, 79, 78, 78, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, }; const int bw = 4 << b_width_log2_lookup[plane_bsize]; const int bh = 4 << b_height_log2_lookup[plane_bsize]; int size = MAX(bw, bh); int size_scale = (size >= 64 ? 1 : size == 32 ? 2 : size == 16 ? 4 : size == 8 ? 8 : 16); int i, j; #if CONFIG_WEDGE_PARTITION if (use_wedge_interintra && get_wedge_bits(bsize)) { const uint8_t *mask = vp9_get_soft_mask(wedge_index, bsize, bh, bw); for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; comppred[i * compstride + j] = (intrapred[i * intrastride + j] * m + interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } return; } #endif // CONFIG_WEDGE_PARTITION switch (mode) { case V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D63_PRED: case D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] * 3 + weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D207_PRED: case D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[j * size_scale] * 3 + weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] + weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case TM_PRED: case DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #if CONFIG_VP9_HIGHBITDEPTH static void combine_interintra_highbd(PREDICTION_MODE mode, #if CONFIG_WEDGE_PARTITION int use_wedge_interintra, int wedge_index, BLOCK_SIZE bsize, #endif // CONFIG_WEDGE_PARTITION BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, uint8_t *interpred8, int interstride, uint8_t *intrapred8, int intrastride, int bd) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; static const int weights1d[64] = { 128, 125, 122, 119, 116, 114, 111, 109, 107, 105, 103, 101, 99, 97, 96, 94, 93, 91, 90, 89, 88, 86, 85, 84, 83, 82, 81, 81, 80, 79, 78, 78, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, }; const int bw = 4 << b_width_log2_lookup[plane_bsize]; const int bh = 4 << b_height_log2_lookup[plane_bsize]; int size = MAX(bw, bh); int size_scale = (size >= 64 ? 1 : size == 32 ? 2 : size == 16 ? 4 : size == 8 ? 8 : 16); int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); (void) bd; #if CONFIG_WEDGE_PARTITION if (use_wedge_interintra && get_wedge_bits(bsize)) { const uint8_t *mask = vp9_get_soft_mask(wedge_index, bsize, bh, bw); for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; comppred[i * compstride + j] = (intrapred[i * intrastride + j] * m + interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } return; } #endif // CONFIG_WEDGE_PARTITION switch (mode) { case V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D63_PRED: case D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] * 3 + weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D207_PRED: case D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[j * size_scale] * 3 + weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] + weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case TM_PRED: case DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #endif // CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors_for_2nd_block_interintra( const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int bwltbh, int x, int y, int plane) { int i; DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16); #endif uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; const uint8_t *ref_fi; int ref_stride_fi; // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // left if (left_available) { if (bwltbh) { ref_fi = ref; ref_stride_fi = ref_stride; } else { ref_fi = dst; ref_stride_fi = dst_stride; } if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; } else { const int extend_bottom = frame_height - y0; assert(extend_bottom >= 0); for (i = 0; i < extend_bottom; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; for (; i < bs; ++i) left_col[i] = ref_fi[(extend_bottom - 1) * ref_stride_fi - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; } } else { vpx_memset(left_col, 129, bs); } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint8_t *above_ref; if (bwltbh) { ref_fi = dst; ref_stride_fi = dst_stride; above_row[-1] = left_available ? ref_fi[-ref_stride_fi-1] : 129; } else { ref_fi = ref; ref_stride_fi = ref_stride; above_row[-1] = ref_fi[-ref_stride_fi-1]; } above_ref = ref_fi - ref_stride_fi; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; assert(r >= 0); if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs); else vpx_memset(above_row + bs, above_row[bs - 1], bs); } } } else { vpx_memset(above_row, 127, bs * 2); above_row[-1] = 127; } // predict if (mode == DC_PRED) { dc_pred[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); } } #if CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors_for_2nd_block_interintra_highbd( const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int bwltbh, int x, int y, int plane, int bd) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED_ARRAY(16, uint16_t, left_col, 64); #if CONFIG_TX64X64 DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 256 + 16); #else DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 128 + 16); #endif uint16_t *above_row = above_data + 16; const uint16_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; int base = 128 << (bd - 8); const uint16_t *ref_fi; int ref_stride_fi; // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // left if (left_available) { if (bwltbh) { ref_fi = ref; ref_stride_fi = ref_stride; } else { ref_fi = dst; ref_stride_fi = dst_stride; } if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; for (; i < bs; ++i) left_col[i] = ref_fi[(extend_bottom - 1) * ref_stride_fi - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref_fi[i * ref_stride_fi - 1]; } } else { vpx_memset16(left_col, base + 1, bs); } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint16_t *above_ref; if (bwltbh) { ref_fi = dst; ref_stride_fi = dst_stride; above_row[-1] = left_available ? ref_fi[-ref_stride_fi-1] : (base + 1); } else { ref_fi = ref; ref_stride_fi = ref_stride; above_row[-1] = ref_fi[-ref_stride_fi-1]; } above_ref = ref_fi - ref_stride_fi; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs * sizeof(uint16_t)); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t)); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } // TODO(Peter) this value should probably change for high bitdepth above_row[-1] = left_available ? above_ref[-1] : (base + 1); } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t)); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs * sizeof(uint16_t)); else vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } } else { vpx_memset16(above_row, base - 1, bs * 2); // TODO(Peter): this value should probably change for high bitdepth above_row[-1] = base - 1; } // predict if (mode == DC_PRED) { dc_pred_high[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col, bd); } else { pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH // Break down rectangular intra prediction for joint spatio-temporal prediction // into two square intra predictions. static void build_intra_predictors_for_interintra( MACROBLOCKD *xd, uint8_t *src, int src_stride, uint8_t *pred_ptr, int stride, PREDICTION_MODE mode, int bw, int bh, int up_available, int left_available, int right_available, int plane) { if (bw == bh) { build_intra_predictors(xd, src, src_stride, pred_ptr, stride, mode, blocklen_to_txsize(bw), up_available, left_available, right_available, 0, 0, plane); } else if (bw < bh) { const TX_SIZE tx_size = blocklen_to_txsize(bw); uint8_t *src_bottom = src + bw * src_stride; uint8_t *pred_ptr_bottom = pred_ptr + bw * stride; build_intra_predictors( xd, src, src_stride, pred_ptr, stride, mode, tx_size, up_available, left_available, right_available, 0, 0, plane); build_intra_predictors_for_2nd_block_interintra( xd, src_bottom, src_stride, pred_ptr_bottom, stride, mode, tx_size, 1, left_available, 0, 1, 0, bw, plane); } else { const TX_SIZE tx_size = blocklen_to_txsize(bh); uint8_t *src_right = src + bh; uint8_t *pred_ptr_right = pred_ptr + bh; build_intra_predictors( xd, src, src_stride, pred_ptr, stride, mode, tx_size, up_available, left_available, 1, 0, 0, plane); build_intra_predictors_for_2nd_block_interintra( xd, src_right, src_stride, pred_ptr_right, stride, mode, tx_size, up_available, 1, right_available, 0, bh, 0, plane); } } #if CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors_for_interintra_highbd( MACROBLOCKD *xd, uint8_t *src, int src_stride, uint8_t *pred_ptr, int stride, PREDICTION_MODE mode, int bw, int bh, int up_available, int left_available, int right_available, int plane) { if (bw == bh) { build_intra_predictors_highbd(xd, src, src_stride, pred_ptr, stride, mode, blocklen_to_txsize(bw), up_available, left_available, right_available, 0, 0, plane, xd->bd); } else if (bw < bh) { const TX_SIZE tx_size = blocklen_to_txsize(bw); uint8_t *src_bottom = src + bw * src_stride; uint8_t *pred_ptr_bottom = pred_ptr + bw * stride; build_intra_predictors_highbd( xd, src, src_stride, pred_ptr, stride, mode, tx_size, up_available, left_available, right_available, 0, 0, plane, xd->bd); build_intra_predictors_for_2nd_block_interintra_highbd( xd, src_bottom, src_stride, pred_ptr_bottom, stride, mode, tx_size, 1, left_available, 0, 1, 0, bw, plane, xd->bd); } else { const TX_SIZE tx_size = blocklen_to_txsize(bh); uint8_t *src_right = src + bh; uint8_t *pred_ptr_right = pred_ptr + bh; build_intra_predictors_highbd( xd, src, src_stride, pred_ptr, stride, mode, tx_size, up_available, left_available, 1, 0, 0, plane, xd->bd); build_intra_predictors_for_2nd_block_interintra_highbd( xd, src_right, src_stride, pred_ptr_right, stride, mode, tx_size, up_available, 1, right_available, 0, bh, 0, plane, xd->bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH void vp9_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BLOCK_SIZE bsize) { int bw = 4 << b_width_log2_lookup[bsize]; int bh = 4 << b_height_log2_lookup[bsize]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED_ARRAY(16, uint16_t, intrapredictor, CODING_UNIT_SIZE * CODING_UNIT_SIZE); build_intra_predictors_for_interintra_highbd( xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, CONVERT_TO_BYTEPTR(intrapredictor), bw, xd->mi[0].src_mi->mbmi.interintra_mode, bw, bh, xd->up_available, xd->left_available, 0, 0); combine_interintra_highbd(xd->mi[0].src_mi->mbmi.interintra_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION bsize, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), bw, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { uint8_t intrapredictor[CODING_UNIT_SIZE * CODING_UNIT_SIZE]; build_intra_predictors_for_interintra( xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, intrapredictor, bw, xd->mi[0].src_mi->mbmi.interintra_mode, bw, bh, xd->up_available, xd->left_available, 0, 0); combine_interintra(xd->mi[0].src_mi->mbmi.interintra_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION bsize, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ypred, ystride, intrapredictor, bw); } } void vp9_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BLOCK_SIZE bsize) { BLOCK_SIZE uvbsize = get_plane_block_size(bsize, &xd->plane[1]); int bw = 4 << b_width_log2_lookup[uvbsize]; int bh = 4 << b_height_log2_lookup[uvbsize]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED_ARRAY(16, uint16_t, uintrapredictor, CODING_UNIT_SIZE * CODING_UNIT_SIZE); DECLARE_ALIGNED_ARRAY(16, uint16_t, vintrapredictor, CODING_UNIT_SIZE * CODING_UNIT_SIZE); build_intra_predictors_for_interintra_highbd( xd, xd->plane[1].dst.buf, xd->plane[1].dst.stride, CONVERT_TO_BYTEPTR(uintrapredictor), bw, xd->mi[0].src_mi->mbmi.interintra_uv_mode, bw, bh, xd->up_available, xd->left_available, 0, 1); build_intra_predictors_for_interintra_highbd( xd, xd->plane[2].dst.buf, xd->plane[1].dst.stride, CONVERT_TO_BYTEPTR(vintrapredictor), bw, xd->mi[0].src_mi->mbmi.interintra_uv_mode, bw, bh, xd->up_available, xd->left_available, 0, 2); combine_interintra_highbd(xd->mi[0].src_mi->mbmi.interintra_uv_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_uv_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION uvbsize, xd->plane[1].dst.buf, xd->plane[1].dst.stride, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), bw, xd->bd); combine_interintra_highbd(xd->mi[0].src_mi->mbmi.interintra_uv_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_uv_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION uvbsize, xd->plane[2].dst.buf, xd->plane[2].dst.stride, vpred, vstride, CONVERT_TO_BYTEPTR(vintrapredictor), bw, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { uint8_t uintrapredictor[CODING_UNIT_SIZE * CODING_UNIT_SIZE]; uint8_t vintrapredictor[CODING_UNIT_SIZE * CODING_UNIT_SIZE]; build_intra_predictors_for_interintra( xd, xd->plane[1].dst.buf, xd->plane[1].dst.stride, uintrapredictor, bw, xd->mi[0].src_mi->mbmi.interintra_uv_mode, bw, bh, xd->up_available, xd->left_available, 0, 1); build_intra_predictors_for_interintra( xd, xd->plane[2].dst.buf, xd->plane[1].dst.stride, vintrapredictor, bw, xd->mi[0].src_mi->mbmi.interintra_uv_mode, bw, bh, xd->up_available, xd->left_available, 0, 2); combine_interintra(xd->mi[0].src_mi->mbmi.interintra_uv_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_uv_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION uvbsize, xd->plane[1].dst.buf, xd->plane[1].dst.stride, upred, ustride, uintrapredictor, bw); combine_interintra(xd->mi[0].src_mi->mbmi.interintra_uv_mode, #if CONFIG_WEDGE_PARTITION xd->mi[0].src_mi->mbmi.use_wedge_interintra, xd->mi[0].src_mi->mbmi.interintra_uv_wedge_index, bsize, #endif // CONFIG_WEDGE_PARTITION uvbsize, xd->plane[2].dst.buf, xd->plane[2].dst.stride, vpred, vstride, vintrapredictor, bw); } } void vp9_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BLOCK_SIZE bsize) { vp9_build_interintra_predictors_sby(xd, ypred, ystride, bsize); vp9_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, bsize); } #endif // CONFIG_INTERINTRA