/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vp9_rtcd.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_idct.h" #if CONFIG_EXT_TX #define FLIPUD_PTR(dest, stride, size) do { \ (dest) = (dest) + ((size) - 1) * (stride); \ (stride) = - (stride); \ } while (0) static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int size) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: // flip UD FLIPUD_PTR(*dst, *dstride, size); break; case DCT_FLIPADST: case ADST_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, size); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, size); // flip LR FLIPUD_PTR(*src, *sstride, size); break; case DST_DST: case DCT_DST: case DST_DCT: case DST_ADST: case ADST_DST: break; case DST_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, size); break; case FLIPADST_DST: // flip UD FLIPUD_PTR(*dst, *dstride, size); break; default: assert(0); break; } } #if CONFIG_VP9_HIGHBITDEPTH static void maybe_flip_strides16(uint16_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int size) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: // flip UD FLIPUD_PTR(*dst, *dstride, size); break; case DCT_FLIPADST: case ADST_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, size); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, size); // flip LR FLIPUD_PTR(*src, *sstride, size); break; case DST_DST: case DCT_DST: case DST_DCT: case DST_ADST: case ADST_DST: break; case DST_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, size); break; case FLIPADST_DST: // flip UD FLIPUD_PTR(*dst, *dstride, size); break; default: assert(0); break; } } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_EXT_TX void vp9_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_high_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = WRAPLOW(a1, 8); op[1] = WRAPLOW(b1, 8); op[2] = WRAPLOW(c1, 8); op[3] = WRAPLOW(d1, 8); ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; dest[stride * 0] = clip_pixel_add(dest[stride * 0], a1); dest[stride * 1] = clip_pixel_add(dest[stride * 1], b1); dest[stride * 2] = clip_pixel_add(dest[stride * 2], c1); dest[stride * 3] = clip_pixel_add(dest[stride * 3], d1); ip++; dest++; } } void vp9_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest, int dest_stride) { int i; tran_high_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = WRAPLOW(a1, 8); op[1] = op[2] = op[3] = WRAPLOW(e1, 8); ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = clip_pixel_add(dest[dest_stride * 0], a1); dest[dest_stride * 1] = clip_pixel_add(dest[dest_stride * 1], e1); dest[dest_stride * 2] = clip_pixel_add(dest[dest_stride * 2], e1); dest[dest_stride * 3] = clip_pixel_add(dest[dest_stride * 3], e1); ip++; dest++; } } static void idct4(const tran_low_t *input, tran_low_t *output) { tran_low_t step[4]; tran_high_t temp1, temp2; // stage 1 temp1 = (input[0] + input[2]) * cospi_16_64; temp2 = (input[0] - input[2]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step[3] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 output[0] = WRAPLOW(step[0] + step[3], 8); output[1] = WRAPLOW(step[1] + step[2], 8); output[2] = WRAPLOW(step[1] - step[2], 8); output[3] = WRAPLOW(step[0] - step[3], 8); } void vp9_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[4 * 4]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[4], temp_out[4]; // Rows for (i = 0; i < 4; ++i) { idct4(input, outptr); input += 4; outptr += 4; } // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; idct4(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4)); } } } void vp9_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest, int dest_stride) { int i; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 4); for (i = 0; i < 4; i++) { dest[0] = clip_pixel_add(dest[0], a1); dest[1] = clip_pixel_add(dest[1], a1); dest[2] = clip_pixel_add(dest[2], a1); dest[3] = clip_pixel_add(dest[3], a1); dest += dest_stride; } } static void idct8(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[2] = input[4]; step1[1] = input[2]; step1[3] = input[6]; temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 & stage 3 - even half idct4(step1, step1); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); // stage 3 -odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], 8); output[1] = WRAPLOW(step1[1] + step1[6], 8); output[2] = WRAPLOW(step1[2] + step1[5], 8); output[3] = WRAPLOW(step1[3] + step1[4], 8); output[4] = WRAPLOW(step1[3] - step1[4], 8); output[5] = WRAPLOW(step1[2] - step1[5], 8); output[6] = WRAPLOW(step1[1] - step1[6], 8); output[7] = WRAPLOW(step1[0] - step1[7], 8); } void vp9_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows for (i = 0; i < 8; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } void vp9_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 5); for (j = 0; j < 8; ++j) { for (i = 0; i < 8; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } static void iadst4(const tran_low_t *input, tran_low_t *output) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[0]; tran_low_t x1 = input[1]; tran_low_t x2 = input[2]; tran_low_t x3 = input[3]; if (!(x0 | x1 | x2 | x3)) { output[0] = output[1] = output[2] = output[3] = 0; return; } s0 = sinpi_1_9 * x0; s1 = sinpi_2_9 * x0; s2 = sinpi_3_9 * x1; s3 = sinpi_4_9 * x2; s4 = sinpi_1_9 * x2; s5 = sinpi_2_9 * x3; s6 = sinpi_4_9 * x3; s7 = x0 - x2 + x3; s0 = s0 + s3 + s5; s1 = s1 - s4 - s6; s3 = s2; s2 = sinpi_3_9 * s7; // 1-D transform scaling factor is sqrt(2). // The overall dynamic range is 14b (input) + 14b (multiplication scaling) // + 1b (addition) = 29b. // Hence the output bit depth is 15b. output[0] = WRAPLOW(dct_const_round_shift(s0 + s3), 8); output[1] = WRAPLOW(dct_const_round_shift(s1 + s3), 8); output[2] = WRAPLOW(dct_const_round_shift(s2), 8); output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3), 8); } #if CONFIG_EXT_TX void idst4(const tran_low_t *input, tran_low_t *output) { #if USE_DST2 // vp9_igentx4(input, output, Tx4); tran_low_t step[4]; tran_high_t temp1, temp2; // stage 1 temp1 = (input[3] + input[1]) * cospi_16_64; temp2 = (input[3] - input[1]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[2] * cospi_24_64 - input[0] * cospi_8_64; temp2 = input[2] * cospi_8_64 + input[0] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step[3] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 output[0] = WRAPLOW(step[0] + step[3], 8); output[1] = WRAPLOW(-step[1] - step[2], 8); output[2] = WRAPLOW(step[1] - step[2], 8); output[3] = WRAPLOW(step[3] - step[0], 8); #else // {sin(pi/5), sin(pi*2/5)} * sqrt(2/5) * sqrt(2) static const int32_t sinvalue_lookup[] = { 141124871, 228344838, }; int64_t sum; int64_t s03 = (input[0] + input[3]); int64_t d03 = (input[0] - input[3]); int64_t s12 = (input[1] + input[2]); int64_t d12 = (input[1] - input[2]); sum = s03 * sinvalue_lookup[0] + s12 * sinvalue_lookup[1]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d03 * sinvalue_lookup[1] + d12 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s03 * sinvalue_lookup[1] - s12 * sinvalue_lookup[0]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d03 * sinvalue_lookup[0] - d12 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); #endif } #if CONFIG_VP9_HIGHBITDEPTH void highbd_idst4(const tran_low_t *input, tran_low_t *output, int bd) { #if USE_DST2 // vp9_highbd_igentx4(input, output, bd, Tx4); tran_low_t step[4]; tran_high_t temp1, temp2; (void) bd; // stage 1 temp1 = (input[3] + input[1]) * cospi_16_64; temp2 = (input[3] - input[1]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[2] * cospi_24_64 - input[0] * cospi_8_64; temp2 = input[2] * cospi_8_64 + input[0] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step[3] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 output[0] = WRAPLOW(step[0] + step[3], bd); output[1] = WRAPLOW(-step[1] - step[2], bd); output[2] = WRAPLOW(step[1] - step[2], bd); output[3] = WRAPLOW(step[3] - step[0], bd); #else // {sin(pi/5), sin(pi*2/5)} * sqrt(2/5) * sqrt(2) static const int32_t sinvalue_lookup[] = { 141124871, 228344838, }; int64_t sum; int64_t s03 = (input[0] + input[3]); int64_t d03 = (input[0] - input[3]); int64_t s12 = (input[1] + input[2]); int64_t d12 = (input[1] - input[2]); (void) bd; sum = s03 * sinvalue_lookup[0] + s12 * sinvalue_lookup[1]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d03 * sinvalue_lookup[1] + d12 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s03 * sinvalue_lookup[1] - s12 * sinvalue_lookup[0]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d03 * sinvalue_lookup[0] - d12 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); #endif } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_EXT_TX void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { const transform_2d IHT_4[] = { { idct4, idct4 }, // DCT_DCT = 0 { iadst4, idct4 }, // ADST_DCT = 1 { idct4, iadst4 }, // DCT_ADST = 2 { iadst4, iadst4 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { iadst4, idct4 }, // FLIPADST_DCT = 4 { idct4, iadst4 }, // DCT_FLIPADST = 5 { iadst4, iadst4 }, // FLIPADST_FLIPADST = 6 { iadst4, iadst4 }, // ADST_FLIPADST = 7 { iadst4, iadst4 }, // FLIPADST_ADST = 8 { idst4, idst4 }, // DST_DST = 9 { idst4, idct4 }, // DST_DCT = 10 { idct4, idst4 }, // DCT_DST = 11 { idst4, iadst4 }, // DST_ADST = 12 { iadst4, idst4 }, // ADST_DST = 13 { idst4, iadst4 }, // DST_FLIPADST = 14 { iadst4, idst4 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, out[i]); input += 4; } // transpose for (i = 1 ; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); } } } static void iadst8(const tran_low_t *input, tran_low_t *output) { int s0, s1, s2, s3, s4, s5, s6, s7; tran_high_t x0 = input[7]; tran_high_t x1 = input[0]; tran_high_t x2 = input[5]; tran_high_t x3 = input[2]; tran_high_t x4 = input[3]; tran_high_t x5 = input[4]; tran_high_t x6 = input[1]; tran_high_t x7 = input[6]; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = output[6] = output[7] = 0; return; } // stage 1 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; s1 = cospi_30_64 * x0 - cospi_2_64 * x1; s2 = cospi_10_64 * x2 + cospi_22_64 * x3; s3 = cospi_22_64 * x2 - cospi_10_64 * x3; s4 = cospi_18_64 * x4 + cospi_14_64 * x5; s5 = cospi_14_64 * x4 - cospi_18_64 * x5; s6 = cospi_26_64 * x6 + cospi_6_64 * x7; s7 = cospi_6_64 * x6 - cospi_26_64 * x7; x0 = WRAPLOW(dct_const_round_shift(s0 + s4), 8); x1 = WRAPLOW(dct_const_round_shift(s1 + s5), 8); x2 = WRAPLOW(dct_const_round_shift(s2 + s6), 8); x3 = WRAPLOW(dct_const_round_shift(s3 + s7), 8); x4 = WRAPLOW(dct_const_round_shift(s0 - s4), 8); x5 = WRAPLOW(dct_const_round_shift(s1 - s5), 8); x6 = WRAPLOW(dct_const_round_shift(s2 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s3 - s7), 8); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = cospi_8_64 * x4 + cospi_24_64 * x5; s5 = cospi_24_64 * x4 - cospi_8_64 * x5; s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; s7 = cospi_8_64 * x6 + cospi_24_64 * x7; x0 = WRAPLOW(s0 + s2, 8); x1 = WRAPLOW(s1 + s3, 8); x2 = WRAPLOW(s0 - s2, 8); x3 = WRAPLOW(s1 - s3, 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8); // stage 3 s2 = cospi_16_64 * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (x6 - x7); x2 = WRAPLOW(dct_const_round_shift(s2), 8); x3 = WRAPLOW(dct_const_round_shift(s3), 8); x6 = WRAPLOW(dct_const_round_shift(s6), 8); x7 = WRAPLOW(dct_const_round_shift(s7), 8); output[0] = WRAPLOW(x0, 8); output[1] = WRAPLOW(-x4, 8); output[2] = WRAPLOW(x6, 8); output[3] = WRAPLOW(-x2, 8); output[4] = WRAPLOW(x3, 8); output[5] = WRAPLOW(-x7, 8); output[6] = WRAPLOW(x5, 8); output[7] = WRAPLOW(-x1, 8); } #if CONFIG_EXT_TX void idst8(const tran_low_t *input, tran_low_t *output) { #if USE_DST2 // vp9_igentx8(input, output, Tx8); tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[7]; step1[2] = input[3]; step1[1] = input[5]; step1[3] = input[1]; temp1 = input[6] * cospi_28_64 - input[0] * cospi_4_64; temp2 = input[6] * cospi_4_64 + input[0] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[2] * cospi_12_64 - input[4] * cospi_20_64; temp2 = input[2] * cospi_20_64 + input[4] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 & stage 3 - even half idct4(step1, step1); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); // stage 3 -odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], 8); output[1] = WRAPLOW(-step1[1] - step1[6], 8); output[2] = WRAPLOW(step1[2] + step1[5], 8); output[3] = WRAPLOW(-step1[3] - step1[4], 8); output[4] = WRAPLOW(step1[3] - step1[4], 8); output[5] = WRAPLOW(-step1[2] + step1[5], 8); output[6] = WRAPLOW(step1[1] - step1[6], 8); output[7] = WRAPLOW(-step1[0] + step1[7], 8); #else // {sin(pi/9), sin(pi*2/9), ..., sin(pi*4/9)} * sqrt(2/9) * 2 static const int32_t sinvalue_lookup[] = { 86559612, 162678858, 219176632, 249238470 }; int64_t sum; int64_t s07 = (input[0] + input[7]); int64_t d07 = (input[0] - input[7]); int64_t s16 = (input[1] + input[6]); int64_t d16 = (input[1] - input[6]); int64_t s25 = (input[2] + input[5]); int64_t d25 = (input[2] - input[5]); int64_t s34 = (input[3] + input[4]); int64_t d34 = (input[3] - input[4]); sum = s07 * sinvalue_lookup[0] + s16 * sinvalue_lookup[1] + s25 * sinvalue_lookup[2] + s34 * sinvalue_lookup[3]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d07 * sinvalue_lookup[1] + d16 * sinvalue_lookup[3] + d25 * sinvalue_lookup[2] + d34 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = (s07 + s16 - s34)* sinvalue_lookup[2]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d07 * sinvalue_lookup[3] + d16 * sinvalue_lookup[0] - d25 * sinvalue_lookup[2] - d34 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s07 * sinvalue_lookup[3] - s16 * sinvalue_lookup[0] - s25 * sinvalue_lookup[2] + s34 * sinvalue_lookup[1]; output[4] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = (d07 - d16 + d34)* sinvalue_lookup[2]; output[5] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s07 * sinvalue_lookup[1] - s16 * sinvalue_lookup[3] + s25 * sinvalue_lookup[2] - s34 * sinvalue_lookup[0]; output[6] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d07 * sinvalue_lookup[0] - d16 * sinvalue_lookup[1] + d25 * sinvalue_lookup[2] - d34 * sinvalue_lookup[3]; output[7] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); #endif } #if CONFIG_VP9_HIGHBITDEPTH void highbd_idst8(const tran_low_t *input, tran_low_t *output, int bd) { #if USE_DST2 // vp9_highbd_igentx8(input, output, bd, Tx8); tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[7]; step1[2] = input[3]; step1[1] = input[5]; step1[3] = input[1]; temp1 = input[6] * cospi_28_64 - input[0] * cospi_4_64; temp2 = input[6] * cospi_4_64 + input[0] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[2] * cospi_12_64 - input[4] * cospi_20_64; temp2 = input[2] * cospi_20_64 + input[4] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 & stage 3 - even half idct4(step1, step1); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); // stage 3 -odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], bd); output[1] = WRAPLOW(-step1[1] - step1[6], bd); output[2] = WRAPLOW(step1[2] + step1[5], bd); output[3] = WRAPLOW(-step1[3] - step1[4], bd); output[4] = WRAPLOW(step1[3] - step1[4], bd); output[5] = WRAPLOW(-step1[2] + step1[5], bd); output[6] = WRAPLOW(step1[1] - step1[6], bd); output[7] = WRAPLOW(-step1[0] + step1[7], bd); #else // {sin(pi/9), sin(pi*2/9), ..., sin(pi*4/9)} * sqrt(2/9) * 2 static const int32_t sinvalue_lookup[] = { 86559612, 162678858, 219176632, 249238470 }; int64_t sum; int64_t s07 = (input[0] + input[7]); int64_t d07 = (input[0] - input[7]); int64_t s16 = (input[1] + input[6]); int64_t d16 = (input[1] - input[6]); int64_t s25 = (input[2] + input[5]); int64_t d25 = (input[2] - input[5]); int64_t s34 = (input[3] + input[4]); int64_t d34 = (input[3] - input[4]); (void) bd; sum = s07 * sinvalue_lookup[0] + s16 * sinvalue_lookup[1] + s25 * sinvalue_lookup[2] + s34 * sinvalue_lookup[3]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d07 * sinvalue_lookup[1] + d16 * sinvalue_lookup[3] + d25 * sinvalue_lookup[2] + d34 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = (s07 + s16 - s34)* sinvalue_lookup[2]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d07 * sinvalue_lookup[3] + d16 * sinvalue_lookup[0] - d25 * sinvalue_lookup[2] - d34 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s07 * sinvalue_lookup[3] - s16 * sinvalue_lookup[0] - s25 * sinvalue_lookup[2] + s34 * sinvalue_lookup[1]; output[4] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = (d07 - d16 + d34)* sinvalue_lookup[2]; output[5] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s07 * sinvalue_lookup[1] - s16 * sinvalue_lookup[3] + s25 * sinvalue_lookup[2] - s34 * sinvalue_lookup[0]; output[6] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d07 * sinvalue_lookup[0] - d16 * sinvalue_lookup[1] + d25 * sinvalue_lookup[2] - d34 * sinvalue_lookup[3]; output[7] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); #endif } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_EXT_TX static const transform_2d IHT_8[] = { { idct8, idct8 }, // DCT_DCT = 0 { iadst8, idct8 }, // ADST_DCT = 1 { idct8, iadst8 }, // DCT_ADST = 2 { iadst8, iadst8 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { iadst8, idct8 }, // FLIPADST_DCT = 4 { idct8, iadst8 }, // DCT_FLIPADST = 5 { iadst8, iadst8 }, // FLIPADST_FLIPADST = 6 { iadst8, iadst8 }, // ADST_FLIPADST = 7 { iadst8, iadst8 }, // FLIPADST_ADST = 8 { idst8, idst8 }, // DST_DST = 9 { idst8, idct8 }, // DST_DCT = 10 { idct8, idst8 }, // DCT_DST = 11 { idst8, iadst8 }, // DST_ADST = 12 { iadst8, idst8 }, // ADST_DST = 13 { idst8, iadst8 }, // DST_FLIPADST = 14 { iadst8, idst8 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].rows(input, out[i]); input += 8; } // transpose for (i = 1 ; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void vp9_idct8x8_12_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows // only first 4 row has non-zero coefs for (i = 0; i < 4; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } static void idct16(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0/2]; step1[1] = input[16/2]; step1[2] = input[8/2]; step1[3] = input[24/2]; step1[4] = input[4/2]; step1[5] = input[20/2]; step1[6] = input[12/2]; step1[7] = input[28/2]; step1[8] = input[2/2]; step1[9] = input[18/2]; step1[10] = input[10/2]; step1[11] = input[26/2]; step1[12] = input[6/2]; step1[13] = input[22/2]; step1[14] = input[14/2]; step1[15] = input[30/2]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[8] = WRAPLOW(step2[8] + step2[9], 8); step1[9] = WRAPLOW(step2[8] - step2[9], 8); step1[10] = WRAPLOW(-step2[10] + step2[11], 8); step1[11] = WRAPLOW(step2[10] + step2[11], 8); step1[12] = WRAPLOW(step2[12] + step2[13], 8); step1[13] = WRAPLOW(step2[12] - step2[13], 8); step1[14] = WRAPLOW(-step2[14] + step2[15], 8); step1[15] = WRAPLOW(step2[14] + step2[15], 8); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], 8); step1[1] = WRAPLOW(step2[1] + step2[2], 8); step1[2] = WRAPLOW(step2[1] - step2[2], 8); step1[3] = WRAPLOW(step2[0] - step2[3], 8); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], 8); step1[9] = WRAPLOW(step2[9] + step2[10], 8); step1[10] = WRAPLOW(step2[9] - step2[10], 8); step1[11] = WRAPLOW(step2[8] - step2[11], 8); step1[12] = WRAPLOW(-step2[12] + step2[15], 8); step1[13] = WRAPLOW(-step2[13] + step2[14], 8); step1[14] = WRAPLOW(step2[13] + step2[14], 8); step1[15] = WRAPLOW(step2[12] + step2[15], 8); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], 8); step2[1] = WRAPLOW(step1[1] + step1[6], 8); step2[2] = WRAPLOW(step1[2] + step1[5], 8); step2[3] = WRAPLOW(step1[3] + step1[4], 8); step2[4] = WRAPLOW(step1[3] - step1[4], 8); step2[5] = WRAPLOW(step1[2] - step1[5], 8); step2[6] = WRAPLOW(step1[1] - step1[6], 8); step2[7] = WRAPLOW(step1[0] - step1[7], 8); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], 8); output[1] = WRAPLOW(step2[1] + step2[14], 8); output[2] = WRAPLOW(step2[2] + step2[13], 8); output[3] = WRAPLOW(step2[3] + step2[12], 8); output[4] = WRAPLOW(step2[4] + step2[11], 8); output[5] = WRAPLOW(step2[5] + step2[10], 8); output[6] = WRAPLOW(step2[6] + step2[9], 8); output[7] = WRAPLOW(step2[7] + step2[8], 8); output[8] = WRAPLOW(step2[7] - step2[8], 8); output[9] = WRAPLOW(step2[6] - step2[9], 8); output[10] = WRAPLOW(step2[5] - step2[10], 8); output[11] = WRAPLOW(step2[4] - step2[11], 8); output[12] = WRAPLOW(step2[3] - step2[12], 8); output[13] = WRAPLOW(step2[2] - step2[13], 8); output[14] = WRAPLOW(step2[1] - step2[14], 8); output[15] = WRAPLOW(step2[0] - step2[15], 8); } void vp9_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows for (i = 0; i < 16; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } #if CONFIG_WAVELETS void vp9_idct16x16_noscale_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows for (i = 0; i < 16; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 3); } } } #endif // CONFIG_WAVELETS static void iadst16(const tran_low_t *input, tran_low_t *output) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; tran_high_t s9, s10, s11, s12, s13, s14, s15; tran_high_t x0 = input[15]; tran_high_t x1 = input[0]; tran_high_t x2 = input[13]; tran_high_t x3 = input[2]; tran_high_t x4 = input[11]; tran_high_t x5 = input[4]; tran_high_t x6 = input[9]; tran_high_t x7 = input[6]; tran_high_t x8 = input[7]; tran_high_t x9 = input[8]; tran_high_t x10 = input[5]; tran_high_t x11 = input[10]; tran_high_t x12 = input[3]; tran_high_t x13 = input[12]; tran_high_t x14 = input[1]; tran_high_t x15 = input[14]; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15)) { output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = output[6] = output[7] = output[8] = output[9] = output[10] = output[11] = output[12] = output[13] = output[14] = output[15] = 0; return; } // stage 1 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; s1 = x0 * cospi_31_64 - x1 * cospi_1_64; s2 = x2 * cospi_5_64 + x3 * cospi_27_64; s3 = x2 * cospi_27_64 - x3 * cospi_5_64; s4 = x4 * cospi_9_64 + x5 * cospi_23_64; s5 = x4 * cospi_23_64 - x5 * cospi_9_64; s6 = x6 * cospi_13_64 + x7 * cospi_19_64; s7 = x6 * cospi_19_64 - x7 * cospi_13_64; s8 = x8 * cospi_17_64 + x9 * cospi_15_64; s9 = x8 * cospi_15_64 - x9 * cospi_17_64; s10 = x10 * cospi_21_64 + x11 * cospi_11_64; s11 = x10 * cospi_11_64 - x11 * cospi_21_64; s12 = x12 * cospi_25_64 + x13 * cospi_7_64; s13 = x12 * cospi_7_64 - x13 * cospi_25_64; s14 = x14 * cospi_29_64 + x15 * cospi_3_64; s15 = x14 * cospi_3_64 - x15 * cospi_29_64; x0 = WRAPLOW(dct_const_round_shift(s0 + s8), 8); x1 = WRAPLOW(dct_const_round_shift(s1 + s9), 8); x2 = WRAPLOW(dct_const_round_shift(s2 + s10), 8); x3 = WRAPLOW(dct_const_round_shift(s3 + s11), 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s12), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s13), 8); x6 = WRAPLOW(dct_const_round_shift(s6 + s14), 8); x7 = WRAPLOW(dct_const_round_shift(s7 + s15), 8); x8 = WRAPLOW(dct_const_round_shift(s0 - s8), 8); x9 = WRAPLOW(dct_const_round_shift(s1 - s9), 8); x10 = WRAPLOW(dct_const_round_shift(s2 - s10), 8); x11 = WRAPLOW(dct_const_round_shift(s3 - s11), 8); x12 = WRAPLOW(dct_const_round_shift(s4 - s12), 8); x13 = WRAPLOW(dct_const_round_shift(s5 - s13), 8); x14 = WRAPLOW(dct_const_round_shift(s6 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s7 - s15), 8); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4; s5 = x5; s6 = x6; s7 = x7; s8 = x8 * cospi_4_64 + x9 * cospi_28_64; s9 = x8 * cospi_28_64 - x9 * cospi_4_64; s10 = x10 * cospi_20_64 + x11 * cospi_12_64; s11 = x10 * cospi_12_64 - x11 * cospi_20_64; s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; s13 = x12 * cospi_4_64 + x13 * cospi_28_64; s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; s15 = x14 * cospi_20_64 + x15 * cospi_12_64; x0 = WRAPLOW(s0 + s4, 8); x1 = WRAPLOW(s1 + s5, 8); x2 = WRAPLOW(s2 + s6, 8); x3 = WRAPLOW(s3 + s7, 8); x4 = WRAPLOW(s0 - s4, 8); x5 = WRAPLOW(s1 - s5, 8); x6 = WRAPLOW(s2 - s6, 8); x7 = WRAPLOW(s3 - s7, 8); x8 = WRAPLOW(dct_const_round_shift(s8 + s12), 8); x9 = WRAPLOW(dct_const_round_shift(s9 + s13), 8); x10 = WRAPLOW(dct_const_round_shift(s10 + s14), 8); x11 = WRAPLOW(dct_const_round_shift(s11 + s15), 8); x12 = WRAPLOW(dct_const_round_shift(s8 - s12), 8); x13 = WRAPLOW(dct_const_round_shift(s9 - s13), 8); x14 = WRAPLOW(dct_const_round_shift(s10 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s11 - s15), 8); // stage 3 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4 * cospi_8_64 + x5 * cospi_24_64; s5 = x4 * cospi_24_64 - x5 * cospi_8_64; s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; s7 = x6 * cospi_8_64 + x7 * cospi_24_64; s8 = x8; s9 = x9; s10 = x10; s11 = x11; s12 = x12 * cospi_8_64 + x13 * cospi_24_64; s13 = x12 * cospi_24_64 - x13 * cospi_8_64; s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; s15 = x14 * cospi_8_64 + x15 * cospi_24_64; x0 = WRAPLOW(check_range(s0 + s2), 8); x1 = WRAPLOW(check_range(s1 + s3), 8); x2 = WRAPLOW(check_range(s0 - s2), 8); x3 = WRAPLOW(check_range(s1 - s3), 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8); x8 = WRAPLOW(check_range(s8 + s10), 8); x9 = WRAPLOW(check_range(s9 + s11), 8); x10 = WRAPLOW(check_range(s8 - s10), 8); x11 = WRAPLOW(check_range(s9 - s11), 8); x12 = WRAPLOW(dct_const_round_shift(s12 + s14), 8); x13 = WRAPLOW(dct_const_round_shift(s13 + s15), 8); x14 = WRAPLOW(dct_const_round_shift(s12 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s13 - s15), 8); // stage 4 s2 = (- cospi_16_64) * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (- x6 + x7); s10 = cospi_16_64 * (x10 + x11); s11 = cospi_16_64 * (- x10 + x11); s14 = (- cospi_16_64) * (x14 + x15); s15 = cospi_16_64 * (x14 - x15); x2 = WRAPLOW(dct_const_round_shift(s2), 8); x3 = WRAPLOW(dct_const_round_shift(s3), 8); x6 = WRAPLOW(dct_const_round_shift(s6), 8); x7 = WRAPLOW(dct_const_round_shift(s7), 8); x10 = WRAPLOW(dct_const_round_shift(s10), 8); x11 = WRAPLOW(dct_const_round_shift(s11), 8); x14 = WRAPLOW(dct_const_round_shift(s14), 8); x15 = WRAPLOW(dct_const_round_shift(s15), 8); output[0] = WRAPLOW(x0, 8); output[1] = WRAPLOW(-x8, 8); output[2] = WRAPLOW(x12, 8); output[3] = WRAPLOW(-x4, 8); output[4] = WRAPLOW(x6, 8); output[5] = WRAPLOW(x14, 8); output[6] = WRAPLOW(x10, 8); output[7] = WRAPLOW(x2, 8); output[8] = WRAPLOW(x3, 8); output[9] = WRAPLOW(x11, 8); output[10] = WRAPLOW(x15, 8); output[11] = WRAPLOW(x7, 8); output[12] = WRAPLOW(x5, 8); output[13] = WRAPLOW(-x13, 8); output[14] = WRAPLOW(x9, 8); output[15] = WRAPLOW(-x1, 8); } #if CONFIG_EXT_TX void idst16(const tran_low_t *input, tran_low_t *output) { #if USE_DST2 // vp9_igentx16(input, output, Tx16); tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[15]; step1[1] = input[7]; step1[2] = input[11]; step1[3] = input[3]; step1[4] = input[13]; step1[5] = input[5]; step1[6] = input[9]; step1[7] = input[1]; step1[8] = input[14]; step1[9] = input[6]; step1[10] = input[10]; step1[11] = input[2]; step1[12] = input[12]; step1[13] = input[4]; step1[14] = input[8]; step1[15] = input[0]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[8] = WRAPLOW(step2[8] + step2[9], 8); step1[9] = WRAPLOW(step2[8] - step2[9], 8); step1[10] = WRAPLOW(-step2[10] + step2[11], 8); step1[11] = WRAPLOW(step2[10] + step2[11], 8); step1[12] = WRAPLOW(step2[12] + step2[13], 8); step1[13] = WRAPLOW(step2[12] - step2[13], 8); step1[14] = WRAPLOW(-step2[14] + step2[15], 8); step1[15] = WRAPLOW(step2[14] + step2[15], 8); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], 8); step1[1] = WRAPLOW(step2[1] + step2[2], 8); step1[2] = WRAPLOW(step2[1] - step2[2], 8); step1[3] = WRAPLOW(step2[0] - step2[3], 8); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], 8); step1[9] = WRAPLOW(step2[9] + step2[10], 8); step1[10] = WRAPLOW(step2[9] - step2[10], 8); step1[11] = WRAPLOW(step2[8] - step2[11], 8); step1[12] = WRAPLOW(-step2[12] + step2[15], 8); step1[13] = WRAPLOW(-step2[13] + step2[14], 8); step1[14] = WRAPLOW(step2[13] + step2[14], 8); step1[15] = WRAPLOW(step2[12] + step2[15], 8); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], 8); step2[1] = WRAPLOW(step1[1] + step1[6], 8); step2[2] = WRAPLOW(step1[2] + step1[5], 8); step2[3] = WRAPLOW(step1[3] + step1[4], 8); step2[4] = WRAPLOW(step1[3] - step1[4], 8); step2[5] = WRAPLOW(step1[2] - step1[5], 8); step2[6] = WRAPLOW(step1[1] - step1[6], 8); step2[7] = WRAPLOW(step1[0] - step1[7], 8); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], 8); output[1] = WRAPLOW(-step2[1] - step2[14], 8); output[2] = WRAPLOW(step2[2] + step2[13], 8); output[3] = WRAPLOW(-step2[3] - step2[12], 8); output[4] = WRAPLOW(step2[4] + step2[11], 8); output[5] = WRAPLOW(-step2[5] - step2[10], 8); output[6] = WRAPLOW(step2[6] + step2[9], 8); output[7] = WRAPLOW(-step2[7] - step2[8], 8); output[8] = WRAPLOW(step2[7] - step2[8], 8); output[9] = WRAPLOW(-step2[6] + step2[9], 8); output[10] = WRAPLOW(step2[5] - step2[10], 8); output[11] = WRAPLOW(-step2[4] + step2[11], 8); output[12] = WRAPLOW(step2[3] - step2[12], 8); output[13] = WRAPLOW(-step2[2] + step2[13], 8); output[14] = WRAPLOW(step2[1] - step2[14], 8); output[15] = WRAPLOW(-step2[0] + step2[15], 8); #else // {sin(pi/17), sin(pi*2/17, ..., sin(pi*8/17)} * sqrt(2/17) * 2 * sqrt(2) static const int32_t sinvalue_lookup[] = { 47852167, 94074787, 137093803, 175444254, 207820161, 233119001, 250479254, 259309736 }; int64_t sum; int64_t s015 = (input[0] + input[15]); int64_t d015 = (input[0] - input[15]); int64_t s114 = (input[1] + input[14]); int64_t d114 = (input[1] - input[14]); int64_t s213 = (input[2] + input[13]); int64_t d213 = (input[2] - input[13]); int64_t s312 = (input[3] + input[12]); int64_t d312 = (input[3] - input[12]); int64_t s411 = (input[4] + input[11]); int64_t d411 = (input[4] - input[11]); int64_t s510 = (input[5] + input[10]); int64_t d510 = (input[5] - input[10]); int64_t s69 = (input[6] + input[9]); int64_t d69 = (input[6] - input[9]); int64_t s78 = (input[7] + input[8]); int64_t d78 = (input[7] - input[8]); sum = s015 * sinvalue_lookup[0] + s114 * sinvalue_lookup[1] + s213 * sinvalue_lookup[2] + s312 * sinvalue_lookup[3] + s411 * sinvalue_lookup[4] + s510 * sinvalue_lookup[5] + s69 * sinvalue_lookup[6] + s78 * sinvalue_lookup[7]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[1] + d114 * sinvalue_lookup[3] + d213 * sinvalue_lookup[5] + d312 * sinvalue_lookup[7] + d411 * sinvalue_lookup[6] + d510 * sinvalue_lookup[4] + d69 * sinvalue_lookup[2] + d78 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[2] + s114 * sinvalue_lookup[5] + s213 * sinvalue_lookup[7] + s312 * sinvalue_lookup[4] + s411 * sinvalue_lookup[1] - s510 * sinvalue_lookup[0] - s69 * sinvalue_lookup[3] - s78 * sinvalue_lookup[6]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[3] + d114 * sinvalue_lookup[7] + d213 * sinvalue_lookup[4] + d312 * sinvalue_lookup[0] - d411 * sinvalue_lookup[2] - d510 * sinvalue_lookup[6] - d69 * sinvalue_lookup[5] - d78 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[4] + s114 * sinvalue_lookup[6] + s213 * sinvalue_lookup[1] - s312 * sinvalue_lookup[2] - s411 * sinvalue_lookup[7] - s510 * sinvalue_lookup[3] + s69 * sinvalue_lookup[0] + s78 * sinvalue_lookup[5]; output[4] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[5] + d114 * sinvalue_lookup[4] - d213 * sinvalue_lookup[0] - d312 * sinvalue_lookup[6] - d411 * sinvalue_lookup[3] + d510 * sinvalue_lookup[1] + d69 * sinvalue_lookup[7] + d78 * sinvalue_lookup[2]; output[5] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[6] + s114 * sinvalue_lookup[2] - s213 * sinvalue_lookup[3] - s312 * sinvalue_lookup[5] + s411 * sinvalue_lookup[0] + s510 * sinvalue_lookup[7] + s69 * sinvalue_lookup[1] - s78 * sinvalue_lookup[4]; output[6] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[7] + d114 * sinvalue_lookup[0] - d213 * sinvalue_lookup[6] - d312 * sinvalue_lookup[1] + d411 * sinvalue_lookup[5] + d510 * sinvalue_lookup[2] - d69 * sinvalue_lookup[4] - d78 * sinvalue_lookup[3]; output[7] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[7] - s114 * sinvalue_lookup[0] - s213 * sinvalue_lookup[6] + s312 * sinvalue_lookup[1] + s411 * sinvalue_lookup[5] - s510 * sinvalue_lookup[2] - s69 * sinvalue_lookup[4] + s78 * sinvalue_lookup[3]; output[8] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[6] - d114 * sinvalue_lookup[2] - d213 * sinvalue_lookup[3] + d312 * sinvalue_lookup[5] + d411 * sinvalue_lookup[0] - d510 * sinvalue_lookup[7] + d69 * sinvalue_lookup[1] + d78 * sinvalue_lookup[4]; output[9] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[5] - s114 * sinvalue_lookup[4] - s213 * sinvalue_lookup[0] + s312 * sinvalue_lookup[6] - s411 * sinvalue_lookup[3] - s510 * sinvalue_lookup[1] + s69 * sinvalue_lookup[7] - s78 * sinvalue_lookup[2]; output[10] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[4] - d114 * sinvalue_lookup[6] + d213 * sinvalue_lookup[1] + d312 * sinvalue_lookup[2] - d411 * sinvalue_lookup[7] + d510 * sinvalue_lookup[3] + d69 * sinvalue_lookup[0] - d78 * sinvalue_lookup[5]; output[11] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[3] - s114 * sinvalue_lookup[7] + s213 * sinvalue_lookup[4] - s312 * sinvalue_lookup[0] - s411 * sinvalue_lookup[2] + s510 * sinvalue_lookup[6] - s69 * sinvalue_lookup[5] + s78 * sinvalue_lookup[1]; output[12] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[2] - d114 * sinvalue_lookup[5] + d213 * sinvalue_lookup[7] - d312 * sinvalue_lookup[4] + d411 * sinvalue_lookup[1] + d510 * sinvalue_lookup[0] - d69 * sinvalue_lookup[3] + d78 * sinvalue_lookup[6]; output[13] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = s015 * sinvalue_lookup[1] - s114 * sinvalue_lookup[3] + s213 * sinvalue_lookup[5] - s312 * sinvalue_lookup[7] + r411 * sinvalue_lookup[6] - s510 * sinvalue_lookup[4] + s69 * sinvalue_lookup[2] - s78 * sinvalue_lookup[0]; output[14] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); sum = d015 * sinvalue_lookup[0] - d114 * sinvalue_lookup[1] + d213 * sinvalue_lookup[2] - d312 * sinvalue_lookup[3] + d411 * sinvalue_lookup[4] - d510 * sinvalue_lookup[5] + d69 * sinvalue_lookup[6] - d78 * sinvalue_lookup[7]; output[15] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), 8); #endif } #if CONFIG_VP9_HIGHBITDEPTH void highbd_idst16(const tran_low_t *input, tran_low_t *output, int bd) { #if USE_DST2 // vp9_highbd_igentx16(input, output, bd, Tx16); tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[15]; step1[1] = input[7]; step1[2] = input[11]; step1[3] = input[3]; step1[4] = input[13]; step1[5] = input[5]; step1[6] = input[9]; step1[7] = input[1]; step1[8] = input[14]; step1[9] = input[6]; step1[10] = input[10]; step1[11] = input[2]; step1[12] = input[12]; step1[13] = input[4]; step1[14] = input[8]; step1[15] = input[0]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = WRAPLOW(step2[8] + step2[9], bd); step1[9] = WRAPLOW(step2[8] - step2[9], bd); step1[10] = WRAPLOW(-step2[10] + step2[11], bd); step1[11] = WRAPLOW(step2[10] + step2[11], bd); step1[12] = WRAPLOW(step2[12] + step2[13], bd); step1[13] = WRAPLOW(step2[12] - step2[13], bd); step1[14] = WRAPLOW(-step2[14] + step2[15], bd); step1[15] = WRAPLOW(step2[14] + step2[15], bd); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], bd); step1[1] = WRAPLOW(step2[1] + step2[2], bd); step1[2] = WRAPLOW(step2[1] - step2[2], bd); step1[3] = WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], bd); step1[9] = WRAPLOW(step2[9] + step2[10], bd); step1[10] = WRAPLOW(step2[9] - step2[10], bd); step1[11] = WRAPLOW(step2[8] - step2[11], bd); step1[12] = WRAPLOW(-step2[12] + step2[15], bd); step1[13] = WRAPLOW(-step2[13] + step2[14], bd); step1[14] = WRAPLOW(step2[13] + step2[14], bd); step1[15] = WRAPLOW(step2[12] + step2[15], bd); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], bd); step2[1] = WRAPLOW(step1[1] + step1[6], bd); step2[2] = WRAPLOW(step1[2] + step1[5], bd); step2[3] = WRAPLOW(step1[3] + step1[4], bd); step2[4] = WRAPLOW(step1[3] - step1[4], bd); step2[5] = WRAPLOW(step1[2] - step1[5], bd); step2[6] = WRAPLOW(step1[1] - step1[6], bd); step2[7] = WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], bd); output[1] = WRAPLOW(-step2[1] - step2[14], bd); output[2] = WRAPLOW(step2[2] + step2[13], bd); output[3] = WRAPLOW(-step2[3] - step2[12], bd); output[4] = WRAPLOW(step2[4] + step2[11], bd); output[5] = WRAPLOW(-step2[5] - step2[10], bd); output[6] = WRAPLOW(step2[6] + step2[9], bd); output[7] = WRAPLOW(-step2[7] - step2[8], bd); output[8] = WRAPLOW(step2[7] - step2[8], bd); output[9] = WRAPLOW(-step2[6] + step2[9], bd); output[10] = WRAPLOW(step2[5] - step2[10], bd); output[11] = WRAPLOW(-step2[4] + step2[11], bd); output[12] = WRAPLOW(step2[3] - step2[12], bd); output[13] = WRAPLOW(-step2[2] + step2[13], bd); output[14] = WRAPLOW(step2[1] - step2[14], bd); output[15] = WRAPLOW(-step2[0] + step2[15], bd); #else // {sin(pi/17), sin(pi*2/17, ..., sin(pi*8/17)} * sqrt(2/17) * 2 * sqrt(2) static const int32_t sinvalue_lookup[] = { 47852167, 94074787, 137093803, 175444254, 207820161, 233119001, 250479254, 259309736 }; int64_t sum; int64_t s015 = (input[0] + input[15]); int64_t d015 = (input[0] - input[15]); int64_t s114 = (input[1] + input[14]); int64_t d114 = (input[1] - input[14]); int64_t s213 = (input[2] + input[13]); int64_t d213 = (input[2] - input[13]); int64_t s312 = (input[3] + input[12]); int64_t d312 = (input[3] - input[12]); int64_t s411 = (input[4] + input[11]); int64_t d411 = (input[4] - input[11]); int64_t s510 = (input[5] + input[10]); int64_t d510 = (input[5] - input[10]); int64_t s69 = (input[6] + input[9]); int64_t d69 = (input[6] - input[9]); int64_t s78 = (input[7] + input[8]); int64_t d78 = (input[7] - input[8]); (void) bd; sum = s015 * sinvalue_lookup[0] + s114 * sinvalue_lookup[1] + s213 * sinvalue_lookup[2] + s312 * sinvalue_lookup[3] + s411 * sinvalue_lookup[4] + s510 * sinvalue_lookup[5] + s69 * sinvalue_lookup[6] + s78 * sinvalue_lookup[7]; output[0] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[1] + d114 * sinvalue_lookup[3] + d213 * sinvalue_lookup[5] + d312 * sinvalue_lookup[7] + d411 * sinvalue_lookup[6] + d510 * sinvalue_lookup[4] + d69 * sinvalue_lookup[2] + d78 * sinvalue_lookup[0]; output[1] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[2] + s114 * sinvalue_lookup[5] + s213 * sinvalue_lookup[7] + s312 * sinvalue_lookup[4] + s411 * sinvalue_lookup[1] - s510 * sinvalue_lookup[0] - s69 * sinvalue_lookup[3] - s78 * sinvalue_lookup[6]; output[2] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[3] + d114 * sinvalue_lookup[7] + d213 * sinvalue_lookup[4] + d312 * sinvalue_lookup[0] - d411 * sinvalue_lookup[2] - d510 * sinvalue_lookup[6] - d69 * sinvalue_lookup[5] - d78 * sinvalue_lookup[1]; output[3] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[4] + s114 * sinvalue_lookup[6] + s213 * sinvalue_lookup[1] - s312 * sinvalue_lookup[2] - s411 * sinvalue_lookup[7] - s510 * sinvalue_lookup[3] + s69 * sinvalue_lookup[0] + s78 * sinvalue_lookup[5]; output[4] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[5] + d114 * sinvalue_lookup[4] - d213 * sinvalue_lookup[0] - d312 * sinvalue_lookup[6] - d411 * sinvalue_lookup[3] + d510 * sinvalue_lookup[1] + d69 * sinvalue_lookup[7] + d78 * sinvalue_lookup[2]; output[5] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[6] + s114 * sinvalue_lookup[2] - s213 * sinvalue_lookup[3] - s312 * sinvalue_lookup[5] + s411 * sinvalue_lookup[0] + s510 * sinvalue_lookup[7] + s69 * sinvalue_lookup[1] - s78 * sinvalue_lookup[4]; output[6] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[7] + d114 * sinvalue_lookup[0] - d213 * sinvalue_lookup[6] - d312 * sinvalue_lookup[1] + d411 * sinvalue_lookup[5] + d510 * sinvalue_lookup[2] - d69 * sinvalue_lookup[4] - d78 * sinvalue_lookup[3]; output[7] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[7] - s114 * sinvalue_lookup[0] - s213 * sinvalue_lookup[6] + s312 * sinvalue_lookup[1] + s411 * sinvalue_lookup[5] - s510 * sinvalue_lookup[2] - s69 * sinvalue_lookup[4] + s78 * sinvalue_lookup[3]; output[8] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[6] - d114 * sinvalue_lookup[2] - d213 * sinvalue_lookup[3] + d312 * sinvalue_lookup[5] + d411 * sinvalue_lookup[0] - d510 * sinvalue_lookup[7] + d69 * sinvalue_lookup[1] + d78 * sinvalue_lookup[4]; output[9] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[5] - s114 * sinvalue_lookup[4] - s213 * sinvalue_lookup[0] + s312 * sinvalue_lookup[6] - s411 * sinvalue_lookup[3] - s510 * sinvalue_lookup[1] + s69 * sinvalue_lookup[7] - s78 * sinvalue_lookup[2]; output[10] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[4] - d114 * sinvalue_lookup[6] + d213 * sinvalue_lookup[1] + d312 * sinvalue_lookup[2] - d411 * sinvalue_lookup[7] + d510 * sinvalue_lookup[3] + d69 * sinvalue_lookup[0] - d78 * sinvalue_lookup[5]; output[11] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[3] - s114 * sinvalue_lookup[7] + s213 * sinvalue_lookup[4] - s312 * sinvalue_lookup[0] - s411 * sinvalue_lookup[2] + s510 * sinvalue_lookup[6] - s69 * sinvalue_lookup[5] + s78 * sinvalue_lookup[1]; output[12] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[2] - d114 * sinvalue_lookup[5] + d213 * sinvalue_lookup[7] - d312 * sinvalue_lookup[4] + d411 * sinvalue_lookup[1] + d510 * sinvalue_lookup[0] - d69 * sinvalue_lookup[3] + d78 * sinvalue_lookup[6]; output[13] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = s015 * sinvalue_lookup[1] - s114 * sinvalue_lookup[3] + s213 * sinvalue_lookup[5] - s312 * sinvalue_lookup[7] + s411 * sinvalue_lookup[6] - s510 * sinvalue_lookup[4] + s69 * sinvalue_lookup[2] - s78 * sinvalue_lookup[0]; output[14] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); sum = d015 * sinvalue_lookup[0] - d114 * sinvalue_lookup[1] + d213 * sinvalue_lookup[2] - d312 * sinvalue_lookup[3] + d411 * sinvalue_lookup[4] - d510 * sinvalue_lookup[5] + d69 * sinvalue_lookup[6] - d78 * sinvalue_lookup[7]; output[15] = WRAPLOW(ROUND_POWER_OF_TWO(sum, (2 * DCT_CONST_BITS)), bd); #endif } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_EXT_TX static const transform_2d IHT_16[] = { { idct16, idct16 }, // DCT_DCT = 0 { iadst16, idct16 }, // ADST_DCT = 1 { idct16, iadst16 }, // DCT_ADST = 2 { iadst16, iadst16 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { iadst16, idct16 }, // FLIPADST_DCT = 4 { idct16, iadst16 }, // DCT_FLIPADST = 5 { iadst16, iadst16 }, // FLIPADST_FLIPADST = 6 { iadst16, iadst16 }, // ADST_FLIPADST = 7 { iadst16, iadst16 }, // FLIPADST_ADST = 8 { idst16, idst16 }, // DST_DST = 9 { idst16, idct16 }, // DST_DCT = 10 { idct16, idst16 }, // DCT_DST = 11 { idst16, iadst16 }, // DST_ADST = 12 { iadst16, idst16 }, // ADST_DST = 13 { idst16, iadst16 }, // DST_FLIPADST = 14 { iadst16, idst16 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].rows(input, out[i]); input += 16; } // transpose for (i = 1 ; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void vp9_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[16 * 16] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows. Since all non-zero dct coefficients are in // upper-left 4x4 area, we only need to calculate first 4 rows here. for (i = 0; i < 4; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 16; ++j) { for (i = 0; i < 16; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } static void idct32(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[32], step2[32]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[1] = input[16]; step1[2] = input[8]; step1[3] = input[24]; step1[4] = input[4]; step1[5] = input[20]; step1[6] = input[12]; step1[7] = input[28]; step1[8] = input[2]; step1[9] = input[18]; step1[10] = input[10]; step1[11] = input[26]; step1[12] = input[6]; step1[13] = input[22]; step1[14] = input[14]; step1[15] = input[30]; temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64; temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64; step1[16] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[31] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64; temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64; temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64; temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64; temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64; temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64; temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64; temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[16] = WRAPLOW(step1[16] + step1[17], 8); step2[17] = WRAPLOW(step1[16] - step1[17], 8); step2[18] = WRAPLOW(-step1[18] + step1[19], 8); step2[19] = WRAPLOW(step1[18] + step1[19], 8); step2[20] = WRAPLOW(step1[20] + step1[21], 8); step2[21] = WRAPLOW(step1[20] - step1[21], 8); step2[22] = WRAPLOW(-step1[22] + step1[23], 8); step2[23] = WRAPLOW(step1[22] + step1[23], 8); step2[24] = WRAPLOW(step1[24] + step1[25], 8); step2[25] = WRAPLOW(step1[24] - step1[25], 8); step2[26] = WRAPLOW(-step1[26] + step1[27], 8); step2[27] = WRAPLOW(step1[26] + step1[27], 8); step2[28] = WRAPLOW(step1[28] + step1[29], 8); step2[29] = WRAPLOW(step1[28] - step1[29], 8); step2[30] = WRAPLOW(-step1[30] + step1[31], 8); step2[31] = WRAPLOW(step1[30] + step1[31], 8); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[8] = WRAPLOW(step2[8] + step2[9], 8); step1[9] = WRAPLOW(step2[8] - step2[9], 8); step1[10] = WRAPLOW(-step2[10] + step2[11], 8); step1[11] = WRAPLOW(step2[10] + step2[11], 8); step1[12] = WRAPLOW(step2[12] + step2[13], 8); step1[13] = WRAPLOW(step2[12] - step2[13], 8); step1[14] = WRAPLOW(-step2[14] + step2[15], 8); step1[15] = WRAPLOW(step2[14] + step2[15], 8); step1[16] = step2[16]; step1[31] = step2[31]; temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[19] = step2[19]; step1[20] = step2[20]; temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[23] = step2[23]; step1[24] = step2[24]; step1[27] = step2[27]; step1[28] = step2[28]; // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[11] = step1[11]; step2[12] = step1[12]; step2[16] = WRAPLOW(step1[16] + step1[19], 8); step2[17] = WRAPLOW(step1[17] + step1[18], 8); step2[18] = WRAPLOW(step1[17] - step1[18], 8); step2[19] = WRAPLOW(step1[16] - step1[19], 8); step2[20] = WRAPLOW(-step1[20] + step1[23], 8); step2[21] = WRAPLOW(-step1[21] + step1[22], 8); step2[22] = WRAPLOW(step1[21] + step1[22], 8); step2[23] = WRAPLOW(step1[20] + step1[23], 8); step2[24] = WRAPLOW(step1[24] + step1[27], 8); step2[25] = WRAPLOW(step1[25] + step1[26], 8); step2[26] = WRAPLOW(step1[25] - step1[26], 8); step2[27] = WRAPLOW(step1[24] - step1[27], 8); step2[28] = WRAPLOW(-step1[28] + step1[31], 8); step2[29] = WRAPLOW(-step1[29] + step1[30], 8); step2[30] = WRAPLOW(step1[29] + step1[30], 8); step2[31] = WRAPLOW(step1[28] + step1[31], 8); // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], 8); step1[1] = WRAPLOW(step2[1] + step2[2], 8); step1[2] = WRAPLOW(step2[1] - step2[2], 8); step1[3] = WRAPLOW(step2[0] - step2[3], 8); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], 8); step1[9] = WRAPLOW(step2[9] + step2[10], 8); step1[10] = WRAPLOW(step2[9] - step2[10], 8); step1[11] = WRAPLOW(step2[8] - step2[11], 8); step1[12] = WRAPLOW(-step2[12] + step2[15], 8); step1[13] = WRAPLOW(-step2[13] + step2[14], 8); step1[14] = WRAPLOW(step2[13] + step2[14], 8); step1[15] = WRAPLOW(step2[12] + step2[15], 8); step1[16] = step2[16]; step1[17] = step2[17]; temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], 8); step2[1] = WRAPLOW(step1[1] + step1[6], 8); step2[2] = WRAPLOW(step1[2] + step1[5], 8); step2[3] = WRAPLOW(step1[3] + step1[4], 8); step2[4] = WRAPLOW(step1[3] - step1[4], 8); step2[5] = WRAPLOW(step1[2] - step1[5], 8); step2[6] = WRAPLOW(step1[1] - step1[6], 8); step2[7] = WRAPLOW(step1[0] - step1[7], 8); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[14] = step1[14]; step2[15] = step1[15]; step2[16] = WRAPLOW(step1[16] + step1[23], 8); step2[17] = WRAPLOW(step1[17] + step1[22], 8); step2[18] = WRAPLOW(step1[18] + step1[21], 8); step2[19] = WRAPLOW(step1[19] + step1[20], 8); step2[20] = WRAPLOW(step1[19] - step1[20], 8); step2[21] = WRAPLOW(step1[18] - step1[21], 8); step2[22] = WRAPLOW(step1[17] - step1[22], 8); step2[23] = WRAPLOW(step1[16] - step1[23], 8); step2[24] = WRAPLOW(-step1[24] + step1[31], 8); step2[25] = WRAPLOW(-step1[25] + step1[30], 8); step2[26] = WRAPLOW(-step1[26] + step1[29], 8); step2[27] = WRAPLOW(-step1[27] + step1[28], 8); step2[28] = WRAPLOW(step1[27] + step1[28], 8); step2[29] = WRAPLOW(step1[26] + step1[29], 8); step2[30] = WRAPLOW(step1[25] + step1[30], 8); step2[31] = WRAPLOW(step1[24] + step1[31], 8); // stage 7 step1[0] = WRAPLOW(step2[0] + step2[15], 8); step1[1] = WRAPLOW(step2[1] + step2[14], 8); step1[2] = WRAPLOW(step2[2] + step2[13], 8); step1[3] = WRAPLOW(step2[3] + step2[12], 8); step1[4] = WRAPLOW(step2[4] + step2[11], 8); step1[5] = WRAPLOW(step2[5] + step2[10], 8); step1[6] = WRAPLOW(step2[6] + step2[9], 8); step1[7] = WRAPLOW(step2[7] + step2[8], 8); step1[8] = WRAPLOW(step2[7] - step2[8], 8); step1[9] = WRAPLOW(step2[6] - step2[9], 8); step1[10] = WRAPLOW(step2[5] - step2[10], 8); step1[11] = WRAPLOW(step2[4] - step2[11], 8); step1[12] = WRAPLOW(step2[3] - step2[12], 8); step1[13] = WRAPLOW(step2[2] - step2[13], 8); step1[14] = WRAPLOW(step2[1] - step2[14], 8); step1[15] = WRAPLOW(step2[0] - step2[15], 8); step1[16] = step2[16]; step1[17] = step2[17]; step1[18] = step2[18]; step1[19] = step2[19]; temp1 = (-step2[20] + step2[27]) * cospi_16_64; temp2 = (step2[20] + step2[27]) * cospi_16_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[21] + step2[26]) * cospi_16_64; temp2 = (step2[21] + step2[26]) * cospi_16_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[22] + step2[25]) * cospi_16_64; temp2 = (step2[22] + step2[25]) * cospi_16_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[23] + step2[24]) * cospi_16_64; temp2 = (step2[23] + step2[24]) * cospi_16_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[28] = step2[28]; step1[29] = step2[29]; step1[30] = step2[30]; step1[31] = step2[31]; // final stage output[0] = WRAPLOW(step1[0] + step1[31], 8); output[1] = WRAPLOW(step1[1] + step1[30], 8); output[2] = WRAPLOW(step1[2] + step1[29], 8); output[3] = WRAPLOW(step1[3] + step1[28], 8); output[4] = WRAPLOW(step1[4] + step1[27], 8); output[5] = WRAPLOW(step1[5] + step1[26], 8); output[6] = WRAPLOW(step1[6] + step1[25], 8); output[7] = WRAPLOW(step1[7] + step1[24], 8); output[8] = WRAPLOW(step1[8] + step1[23], 8); output[9] = WRAPLOW(step1[9] + step1[22], 8); output[10] = WRAPLOW(step1[10] + step1[21], 8); output[11] = WRAPLOW(step1[11] + step1[20], 8); output[12] = WRAPLOW(step1[12] + step1[19], 8); output[13] = WRAPLOW(step1[13] + step1[18], 8); output[14] = WRAPLOW(step1[14] + step1[17], 8); output[15] = WRAPLOW(step1[15] + step1[16], 8); output[16] = WRAPLOW(step1[15] - step1[16], 8); output[17] = WRAPLOW(step1[14] - step1[17], 8); output[18] = WRAPLOW(step1[13] - step1[18], 8); output[19] = WRAPLOW(step1[12] - step1[19], 8); output[20] = WRAPLOW(step1[11] - step1[20], 8); output[21] = WRAPLOW(step1[10] - step1[21], 8); output[22] = WRAPLOW(step1[9] - step1[22], 8); output[23] = WRAPLOW(step1[8] - step1[23], 8); output[24] = WRAPLOW(step1[7] - step1[24], 8); output[25] = WRAPLOW(step1[6] - step1[25], 8); output[26] = WRAPLOW(step1[5] - step1[26], 8); output[27] = WRAPLOW(step1[4] - step1[27], 8); output[28] = WRAPLOW(step1[3] - step1[28], 8); output[29] = WRAPLOW(step1[2] - step1[29], 8); output[30] = WRAPLOW(step1[1] - step1[30], 8); output[31] = WRAPLOW(step1[0] - step1[31], 8); } void vp9_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows for (i = 0; i < 32; ++i) { int16_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) idct32(input, outptr); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } #if CONFIG_WAVELETS void vp9_idct32x32_noscale_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows for (i = 0; i < 32; ++i) { int16_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) idct32(input, outptr); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 4); } } } #endif // CONFIG_WAVELETS void vp9_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[32 * 32] = {0}; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows // only upper-left 8x8 has non-zero coeff for (i = 0; i < 8; ++i) { idct32(input, outptr); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 32; ++j) { for (i = 0; i < 32; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } // idct void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vp9_idct4x4_16_add(input, dest, stride); else vp9_idct4x4_1_add(input, dest, stride); } void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vp9_iwht4x4_16_add(input, dest, stride); else vp9_iwht4x4_1_add(input, dest, stride); } void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. if (eob == 1) // DC only DCT coefficient vp9_idct8x8_1_add(input, dest, stride); else if (eob <= 12) vp9_idct8x8_12_add(input, dest, stride); else vp9_idct8x8_64_add(input, dest, stride); } void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ vp9_idct16x16_1_add(input, dest, stride); else if (eob <= 10) vp9_idct16x16_10_add(input, dest, stride); else vp9_idct16x16_256_add(input, dest, stride); } void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob == 1) vp9_idct32x32_1_add(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 vp9_idct32x32_34_add(input, dest, stride); else vp9_idct32x32_1024_add(input, dest, stride); } // iht void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct4x4_add(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht4x4_16_add_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht4x4_16_add(input, dest, stride, tx_type); } } void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct8x8_add(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht8x8_64_add_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht8x8_64_add(input, dest, stride, tx_type); } } void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct16x16_add(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht16x16_256_add_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht16x16_256_add(input, dest, stride, tx_type); } } #if CONFIG_TX_SKIP void vp9_tx_identity_add_rect(const tran_low_t *input, uint8_t *dest, int row, int col, int stride_in, int stride_out, int shift) { int r, c, temp; for (r = 0; r < row; r++) for (c = 0; c < col; c++) { temp = dest[r * stride_out + c] + (input[r * stride_in + c] >> shift); dest[r * stride_out + c] = clip_pixel(temp); } } void vp9_tx_identity_add(const tran_low_t *input, uint8_t *dest, int stride, int bs, int shift) { vp9_tx_identity_add_rect(input, dest, bs, bs, bs, stride, shift); } #if CONFIG_VP9_HIGHBITDEPTH void vp9_highbd_tx_identity_add_rect(const tran_low_t *input, uint8_t *dest8, int row, int col, int stride_in, int stride_out, int shift, int bd) { int r, c; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); for (r = 0; r < row; r++) for (c = 0; c < col; c++) { dest[r * stride_out + c] = highbd_clip_pixel_add(dest[r * stride_out + c], input[r * stride_in + c] >> shift, bd); } } void vp9_highbd_tx_identity_add(const tran_low_t *input, uint8_t *dest8, int stride, int bs, int shift, int bd) { vp9_highbd_tx_identity_add_rect(input, dest8, bs, bs, bs, stride, shift, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_TX_SKIP #if CONFIG_TX64X64 #define DownshiftMultiplyBy2(x) x * 2 #define DownshiftMultiply(x) x static void idct16f(double *input, double *output, int stride) { static const double C1 = 0.995184726672197; static const double C2 = 0.98078528040323; static const double C3 = 0.956940335732209; static const double C4 = 0.923879532511287; static const double C5 = 0.881921264348355; static const double C6 = 0.831469612302545; static const double C7 = 0.773010453362737; static const double C8 = 0.707106781186548; static const double C9 = 0.634393284163646; static const double C10 = 0.555570233019602; static const double C11 = 0.471396736825998; static const double C12 = 0.38268343236509; static const double C13 = 0.290284677254462; static const double C14 = 0.195090322016128; static const double C15 = 0.098017140329561; double step[16]; double intermediate[16]; double temp1, temp2; // step 1 and 2 step[ 0] = input[stride*0] + input[stride*8]; step[ 1] = input[stride*0] - input[stride*8]; temp1 = input[stride*4]*C12; temp2 = input[stride*12]*C4; temp1 -= temp2; temp1 = DownshiftMultiply(temp1); temp1 *= C8; step[ 2] = DownshiftMultiplyBy2(temp1); temp1 = input[stride*4]*C4; temp2 = input[stride*12]*C12; temp1 += temp2; temp1 = DownshiftMultiply(temp1); temp1 *= C8; step[ 3] = DownshiftMultiplyBy2(temp1); temp1 = input[stride*2]*C8; temp1 = DownshiftMultiplyBy2(temp1); temp2 = input[stride*6] + input[stride*10]; step[ 4] = temp1 + temp2; step[ 5] = temp1 - temp2; temp1 = input[stride*14]*C8; temp1 = DownshiftMultiplyBy2(temp1); temp2 = input[stride*6] - input[stride*10]; step[ 6] = temp2 - temp1; step[ 7] = temp2 + temp1; // for odd input temp1 = input[stride*3]*C12; temp2 = input[stride*13]*C4; temp1 += temp2; temp1 = DownshiftMultiply(temp1); temp1 *= C8; intermediate[ 8] = DownshiftMultiplyBy2(temp1); temp1 = input[stride*3]*C4; temp2 = input[stride*13]*C12; temp2 -= temp1; temp2 = DownshiftMultiply(temp2); temp2 *= C8; intermediate[ 9] = DownshiftMultiplyBy2(temp2); intermediate[10] = DownshiftMultiplyBy2(input[stride*9]*C8); intermediate[11] = input[stride*15] - input[stride*1]; intermediate[12] = input[stride*15] + input[stride*1]; intermediate[13] = DownshiftMultiplyBy2((input[stride*7]*C8)); temp1 = input[stride*11]*C12; temp2 = input[stride*5]*C4; temp2 -= temp1; temp2 = DownshiftMultiply(temp2); temp2 *= C8; intermediate[14] = DownshiftMultiplyBy2(temp2); temp1 = input[stride*11]*C4; temp2 = input[stride*5]*C12; temp1 += temp2; temp1 = DownshiftMultiply(temp1); temp1 *= C8; intermediate[15] = DownshiftMultiplyBy2(temp1); step[ 8] = intermediate[ 8] + intermediate[14]; step[ 9] = intermediate[ 9] + intermediate[15]; step[10] = intermediate[10] + intermediate[11]; step[11] = intermediate[10] - intermediate[11]; step[12] = intermediate[12] + intermediate[13]; step[13] = intermediate[12] - intermediate[13]; step[14] = intermediate[ 8] - intermediate[14]; step[15] = intermediate[ 9] - intermediate[15]; // step 3 output[stride*0] = step[ 0] + step[ 3]; output[stride*1] = step[ 1] + step[ 2]; output[stride*2] = step[ 1] - step[ 2]; output[stride*3] = step[ 0] - step[ 3]; temp1 = step[ 4]*C14; temp2 = step[ 7]*C2; temp1 -= temp2; output[stride*4] = DownshiftMultiply(temp1); temp1 = step[ 4]*C2; temp2 = step[ 7]*C14; temp1 += temp2; output[stride*7] = DownshiftMultiply(temp1); temp1 = step[ 5]*C10; temp2 = step[ 6]*C6; temp1 -= temp2; output[stride*5] = DownshiftMultiply(temp1); temp1 = step[ 5]*C6; temp2 = step[ 6]*C10; temp1 += temp2; output[stride*6] = DownshiftMultiply(temp1); output[stride*8] = step[ 8] + step[11]; output[stride*9] = step[ 9] + step[10]; output[stride*10] = step[ 9] - step[10]; output[stride*11] = step[ 8] - step[11]; output[stride*12] = step[12] + step[15]; output[stride*13] = step[13] + step[14]; output[stride*14] = step[13] - step[14]; output[stride*15] = step[12] - step[15]; // output 4 step[ 0] = output[stride*0] + output[stride*7]; step[ 1] = output[stride*1] + output[stride*6]; step[ 2] = output[stride*2] + output[stride*5]; step[ 3] = output[stride*3] + output[stride*4]; step[ 4] = output[stride*3] - output[stride*4]; step[ 5] = output[stride*2] - output[stride*5]; step[ 6] = output[stride*1] - output[stride*6]; step[ 7] = output[stride*0] - output[stride*7]; temp1 = output[stride*8]*C7; temp2 = output[stride*15]*C9; temp1 -= temp2; step[ 8] = DownshiftMultiply(temp1); temp1 = output[stride*9]*C11; temp2 = output[stride*14]*C5; temp1 += temp2; step[ 9] = DownshiftMultiply(temp1); temp1 = output[stride*10]*C3; temp2 = output[stride*13]*C13; temp1 -= temp2; step[10] = DownshiftMultiply(temp1); temp1 = output[stride*11]*C15; temp2 = output[stride*12]*C1; temp1 += temp2; step[11] = DownshiftMultiply(temp1); temp1 = output[stride*11]*C1; temp2 = output[stride*12]*C15; temp2 -= temp1; step[12] = DownshiftMultiply(temp2); temp1 = output[stride*10]*C13; temp2 = output[stride*13]*C3; temp1 += temp2; step[13] = DownshiftMultiply(temp1); temp1 = output[stride*9]*C5; temp2 = output[stride*14]*C11; temp2 -= temp1; step[14] = DownshiftMultiply(temp2); temp1 = output[stride*8]*C9; temp2 = output[stride*15]*C7; temp1 += temp2; step[15] = DownshiftMultiply(temp1); // step 5 output[stride*0] = step[0] + step[15]; output[stride*1] = step[1] + step[14]; output[stride*2] = step[2] + step[13]; output[stride*3] = step[3] + step[12]; output[stride*4] = step[4] + step[11]; output[stride*5] = step[5] + step[10]; output[stride*6] = step[6] + step[ 9]; output[stride*7] = step[7] + step[ 8]; output[stride*15] = step[0] - step[15]; output[stride*14] = step[1] - step[14]; output[stride*13] = step[2] - step[13]; output[stride*12] = step[3] - step[12]; output[stride*11] = step[4] - step[11]; output[stride*10] = step[5] - step[10]; output[stride*9] = step[6] - step[ 9]; output[stride*8] = step[7] - step[ 8]; } static void butterfly_32_idct_1d(double *input, double *output, int stride) { static const double C1 = 0.998795456205; // cos(pi * 1 / 64) static const double C3 = 0.989176509965; // cos(pi * 3 / 64) static const double C5 = 0.970031253195; // cos(pi * 5 / 64) static const double C7 = 0.941544065183; // cos(pi * 7 / 64) static const double C9 = 0.903989293123; // cos(pi * 9 / 64) static const double C11 = 0.857728610000; // cos(pi * 11 / 64) static const double C13 = 0.803207531481; // cos(pi * 13 / 64) static const double C15 = 0.740951125355; // cos(pi * 15 / 64) static const double C16 = 0.707106781187; // cos(pi * 16 / 64) static const double C17 = 0.671558954847; // cos(pi * 17 / 64) static const double C19 = 0.595699304492; // cos(pi * 19 / 64) static const double C21 = 0.514102744193; // cos(pi * 21 / 64) static const double C23 = 0.427555093430; // cos(pi * 23 / 64) static const double C25 = 0.336889853392; // cos(pi * 25 / 64) static const double C27 = 0.242980179903; // cos(pi * 27 / 64) static const double C29 = 0.146730474455; // cos(pi * 29 / 64) static const double C31 = 0.049067674327; // cos(pi * 31 / 64) double step1[32]; double step2[32]; step1[ 0] = input[stride*0]; step1[ 1] = input[stride*2]; step1[ 2] = input[stride*4]; step1[ 3] = input[stride*6]; step1[ 4] = input[stride*8]; step1[ 5] = input[stride*10]; step1[ 6] = input[stride*12]; step1[ 7] = input[stride*14]; step1[ 8] = input[stride*16]; step1[ 9] = input[stride*18]; step1[10] = input[stride*20]; step1[11] = input[stride*22]; step1[12] = input[stride*24]; step1[13] = input[stride*26]; step1[14] = input[stride*28]; step1[15] = input[stride*30]; step1[16] = DownshiftMultiplyBy2(input[stride*1]*C16); step1[17] = (input[stride*3] + input[stride*1]); step1[18] = (input[stride*5] + input[stride*3]); step1[19] = (input[stride*7] + input[stride*5]); step1[20] = (input[stride*9] + input[stride*7]); step1[21] = (input[stride*11] + input[stride*9]); step1[22] = (input[stride*13] + input[stride*11]); step1[23] = (input[stride*15] + input[stride*13]); step1[24] = (input[stride*17] + input[stride*15]); step1[25] = (input[stride*19] + input[stride*17]); step1[26] = (input[stride*21] + input[stride*19]); step1[27] = (input[stride*23] + input[stride*21]); step1[28] = (input[stride*25] + input[stride*23]); step1[29] = (input[stride*27] + input[stride*25]); step1[30] = (input[stride*29] + input[stride*27]); step1[31] = (input[stride*31] + input[stride*29]); idct16f(step1, step2, 1); idct16f(step1 + 16, step2 + 16, 1); step2[16] = DownshiftMultiply(step2[16] / (2*C1)); step2[17] = DownshiftMultiply(step2[17] / (2*C3)); step2[18] = DownshiftMultiply(step2[18] / (2*C5)); step2[19] = DownshiftMultiply(step2[19] / (2*C7)); step2[20] = DownshiftMultiply(step2[20] / (2*C9)); step2[21] = DownshiftMultiply(step2[21] / (2*C11)); step2[22] = DownshiftMultiply(step2[22] / (2*C13)); step2[23] = DownshiftMultiply(step2[23] / (2*C15)); step2[24] = DownshiftMultiply(step2[24] / (2*C17)); step2[25] = DownshiftMultiply(step2[25] / (2*C19)); step2[26] = DownshiftMultiply(step2[26] / (2*C21)); step2[27] = DownshiftMultiply(step2[27] / (2*C23)); step2[28] = DownshiftMultiply(step2[28] / (2*C25)); step2[29] = DownshiftMultiply(step2[29] / (2*C27)); step2[30] = DownshiftMultiply(step2[30] / (2*C29)); step2[31] = DownshiftMultiply(step2[31] / (2*C31)); output[stride* 0] = step2[ 0] + step2[16]; output[stride* 1] = step2[ 1] + step2[17]; output[stride* 2] = step2[ 2] + step2[18]; output[stride* 3] = step2[ 3] + step2[19]; output[stride* 4] = step2[ 4] + step2[20]; output[stride* 5] = step2[ 5] + step2[21]; output[stride* 6] = step2[ 6] + step2[22]; output[stride* 7] = step2[ 7] + step2[23]; output[stride* 8] = step2[ 8] + step2[24]; output[stride* 9] = step2[ 9] + step2[25]; output[stride*10] = step2[10] + step2[26]; output[stride*11] = step2[11] + step2[27]; output[stride*12] = step2[12] + step2[28]; output[stride*13] = step2[13] + step2[29]; output[stride*14] = step2[14] + step2[30]; output[stride*15] = step2[15] + step2[31]; output[stride*16] = step2[15] - step2[(31 - 0)]; output[stride*17] = step2[14] - step2[(31 - 1)]; output[stride*18] = step2[13] - step2[(31 - 2)]; output[stride*19] = step2[12] - step2[(31 - 3)]; output[stride*20] = step2[11] - step2[(31 - 4)]; output[stride*21] = step2[10] - step2[(31 - 5)]; output[stride*22] = step2[ 9] - step2[(31 - 6)]; output[stride*23] = step2[ 8] - step2[(31 - 7)]; output[stride*24] = step2[ 7] - step2[(31 - 8)]; output[stride*25] = step2[ 6] - step2[(31 - 9)]; output[stride*26] = step2[ 5] - step2[(31 - 10)]; output[stride*27] = step2[ 4] - step2[(31 - 11)]; output[stride*28] = step2[ 3] - step2[(31 - 12)]; output[stride*29] = step2[ 2] - step2[(31 - 13)]; output[stride*30] = step2[ 1] - step2[(31 - 14)]; output[stride*31] = step2[ 0] - step2[(31 - 15)]; } static void butterfly_64_idct_1d(double *input, double *output, int stride) { double step1[64], step2[64]; int i; static const double C[64] = { 1.00000000000000000000, // cos(0 * pi / 128) 0.99969881869620424997, // cos(1 * pi / 128) 0.99879545620517240501, // cos(2 * pi / 128) 0.99729045667869020697, // cos(3 * pi / 128) 0.99518472667219692873, // cos(4 * pi / 128) 0.99247953459870996706, // cos(5 * pi / 128) 0.98917650996478101444, // cos(6 * pi / 128) 0.98527764238894122162, // cos(7 * pi / 128) 0.98078528040323043058, // cos(8 * pi / 128) 0.97570213003852857003, // cos(9 * pi / 128) 0.97003125319454397424, // cos(10 * pi / 128) 0.96377606579543984022, // cos(11 * pi / 128) 0.95694033573220882438, // cos(12 * pi / 128) 0.94952818059303667475, // cos(13 * pi / 128) 0.94154406518302080631, // cos(14 * pi / 128) 0.93299279883473895669, // cos(15 * pi / 128) 0.92387953251128673848, // cos(16 * pi / 128) 0.91420975570353069095, // cos(17 * pi / 128) 0.90398929312344333820, // cos(18 * pi / 128) 0.89322430119551532446, // cos(19 * pi / 128) 0.88192126434835504956, // cos(20 * pi / 128) 0.87008699110871146054, // cos(21 * pi / 128) 0.85772861000027211809, // cos(22 * pi / 128) 0.84485356524970711689, // cos(23 * pi / 128) 0.83146961230254523567, // cos(24 * pi / 128) 0.81758481315158371139, // cos(25 * pi / 128) 0.80320753148064494287, // cos(26 * pi / 128) 0.78834642762660633863, // cos(27 * pi / 128) 0.77301045336273699338, // cos(28 * pi / 128) 0.75720884650648456748, // cos(29 * pi / 128) 0.74095112535495921691, // cos(30 * pi / 128) 0.72424708295146700276, // cos(31 * pi / 128) 0.70710678118654757274, // cos(32 * pi / 128) 0.68954054473706694051, // cos(33 * pi / 128) 0.67155895484701844111, // cos(34 * pi / 128) 0.65317284295377686654, // cos(35 * pi / 128) 0.63439328416364559882, // cos(36 * pi / 128) 0.61523159058062693028, // cos(37 * pi / 128) 0.59569930449243346793, // cos(38 * pi / 128) 0.57580819141784544968, // cos(39 * pi / 128) 0.55557023301960228867, // cos(40 * pi / 128) 0.53499761988709737537, // cos(41 * pi / 128) 0.51410274419322177231, // cos(42 * pi / 128) 0.49289819222978414892, // cos(43 * pi / 128) 0.47139673682599780857, // cos(44 * pi / 128) 0.44961132965460659516, // cos(45 * pi / 128) 0.42755509343028219593, // cos(46 * pi / 128) 0.40524131400498980549, // cos(47 * pi / 128) 0.38268343236508983729, // cos(48 * pi / 128) 0.35989503653498827740, // cos(49 * pi / 128) 0.33688985339222005111, // cos(50 * pi / 128) 0.31368174039889151761, // cos(51 * pi / 128) 0.29028467725446227554, // cos(52 * pi / 128) 0.26671275747489842090, // cos(53 * pi / 128) 0.24298017990326398197, // cos(54 * pi / 128) 0.21910124015686976984, // cos(55 * pi / 128) 0.19509032201612830359, // cos(56 * pi / 128) 0.17096188876030135595, // cos(57 * pi / 128) 0.14673047445536174793, // cos(58 * pi / 128) 0.12241067519921627893, // cos(59 * pi / 128) 0.09801714032956077016, // cos(60 * pi / 128) 0.07356456359966745406, // cos(61 * pi / 128) 0.04906767432741813290, // cos(62 * pi / 128) 0.02454122852291226731, // cos(63 * pi / 128) }; for (i = 0; i < 64; i += 2) { step1[i / 2] = input[stride * i]; } step1[32] = DownshiftMultiplyBy2(input[stride*1] * C[32]); for (i = 3; i < 64; i+=2) { step1[32 + i/2] = (input[stride * i] + input[stride * (i - 2)]); } butterfly_32_idct_1d(step1, step2, 1); butterfly_32_idct_1d(step1 + 32, step2 + 32, 1); for (i = 32; i < 64; ++i) { step2[i] = DownshiftMultiply(step2[i] / (2 * C[(i - 32) * 2 + 1])); } for (i = 0; i < 32; ++i) { output[stride * i] = step2[i] + step2[32 + i]; } for (i = 0; i < 32; ++i) { output[stride * (i + 32)] = step2[31 - i] - step2[63 - i]; } } void vp9_idct64x64_4096_add_c(const tran_low_t *input, uint8_t *dest, int stride) { // vp9_clear_system_state(); // Make it simd safe : __asm emms; { double out[64 * 64], out2[64 * 64]; int i, j; // First transform rows for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = input[j + i * 64]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out[j + i * 64] = temp_out[j]; } // Then transform columns for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = out[j * 64 + i]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out2[j * 64 + i] = temp_out[j]; } for (j = 0; j < 64; ++j) { for (i = 0; i < 64; ++i) dest[i] = clip_pixel_add(dest[i], round(out2[j * 64 + i] / 128)); dest += stride; } } // vp9_clear_system_state(); // Make it simd safe : __asm emms; } void vp9_idct64x64_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { (void) eob; vp9_idct64x64_4096_add_c(input, dest, stride); } #endif #if CONFIG_VP9_HIGHBITDEPTH void vp9_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_high_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = WRAPLOW(a1, bd); op[1] = WRAPLOW(b1, bd); op[2] = WRAPLOW(c1, bd); op[3] = WRAPLOW(d1, bd); ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd); dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd); dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd); dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd); ip++; dest++; } } void vp9_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8, int dest_stride, int bd) { int i; tran_high_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); (void) bd; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = WRAPLOW(a1, bd); op[1] = op[2] = op[3] = WRAPLOW(e1, bd); ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = highbd_clip_pixel_add( dest[dest_stride * 0], a1, bd); dest[dest_stride * 1] = highbd_clip_pixel_add( dest[dest_stride * 1], e1, bd); dest[dest_stride * 2] = highbd_clip_pixel_add( dest[dest_stride * 2], e1, bd); dest[dest_stride * 3] = highbd_clip_pixel_add( dest[dest_stride * 3], e1, bd); ip++; dest++; } } void vp9_highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step[4]; tran_high_t temp1, temp2; (void) bd; // stage 1 temp1 = (input[0] + input[2]) * cospi_16_64; temp2 = (input[0] - input[2]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step[3] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 output[0] = WRAPLOW(step[0] + step[3], bd); output[1] = WRAPLOW(step[1] + step[2], bd); output[2] = WRAPLOW(step[1] - step[2], bd); output[3] = WRAPLOW(step[0] - step[3], bd); } void vp9_highbd_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[4 * 4]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[4], temp_out[4]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows for (i = 0; i < 4; ++i) { vp9_highbd_idct4(input, outptr, bd); input += 4; outptr += 4; } // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; vp9_highbd_idct4(temp_in, temp_out, bd); for (j = 0; j < 4; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); } } } void vp9_highbd_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest8, int dest_stride, int bd) { int i; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 4); for (i = 0; i < 4; i++) { dest[0] = highbd_clip_pixel_add(dest[0], a1, bd); dest[1] = highbd_clip_pixel_add(dest[1], a1, bd); dest[2] = highbd_clip_pixel_add(dest[2], a1, bd); dest[3] = highbd_clip_pixel_add(dest[3], a1, bd); dest += dest_stride; } } void vp9_highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[2] = input[4]; step1[1] = input[2]; step1[3] = input[6]; temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 & stage 3 - even half vp9_highbd_idct4(step1, step1, bd); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); // stage 3 - odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], bd); output[1] = WRAPLOW(step1[1] + step1[6], bd); output[2] = WRAPLOW(step1[2] + step1[5], bd); output[3] = WRAPLOW(step1[3] + step1[4], bd); output[4] = WRAPLOW(step1[3] - step1[4], bd); output[5] = WRAPLOW(step1[2] - step1[5], bd); output[6] = WRAPLOW(step1[1] - step1[6], bd); output[7] = WRAPLOW(step1[0] - step1[7], bd); } void vp9_highbd_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. for (i = 0; i < 8; ++i) { vp9_highbd_idct8(input, outptr, bd); input += 8; outptr += 8; } // Then transform columns. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; vp9_highbd_idct8(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } void vp9_highbd_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 5); for (j = 0; j < 8; ++j) { for (i = 0; i < 8; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } static void highbd_iadst4(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[0]; tran_low_t x1 = input[1]; tran_low_t x2 = input[2]; tran_low_t x3 = input[3]; (void) bd; if (!(x0 | x1 | x2 | x3)) { vpx_memset(output, 0, 4 * sizeof(*output)); return; } s0 = sinpi_1_9 * x0; s1 = sinpi_2_9 * x0; s2 = sinpi_3_9 * x1; s3 = sinpi_4_9 * x2; s4 = sinpi_1_9 * x2; s5 = sinpi_2_9 * x3; s6 = sinpi_4_9 * x3; s7 = (tran_high_t)(x0 - x2 + x3); s0 = s0 + s3 + s5; s1 = s1 - s4 - s6; s3 = s2; s2 = sinpi_3_9 * s7; // 1-D transform scaling factor is sqrt(2). // The overall dynamic range is 14b (input) + 14b (multiplication scaling) // + 1b (addition) = 29b. // Hence the output bit depth is 15b. output[0] = WRAPLOW(dct_const_round_shift(s0 + s3), bd); output[1] = WRAPLOW(dct_const_round_shift(s1 + s3), bd); output[2] = WRAPLOW(dct_const_round_shift(s2), bd); output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3), bd); } void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { const highbd_transform_2d HIGH_IHT_4[] = { { vp9_highbd_idct4, vp9_highbd_idct4 }, // DCT_DCT = 0 { highbd_iadst4, vp9_highbd_idct4 }, // ADST_DCT = 1 { vp9_highbd_idct4, highbd_iadst4 }, // DCT_ADST = 2 { highbd_iadst4, highbd_iadst4 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { highbd_iadst4, vp9_highbd_idct4 }, // FLIPADST_DCT = 4 { vp9_highbd_idct4, highbd_iadst4 }, // DCT_FLIPADST = 5 { highbd_iadst4, highbd_iadst4 }, // FLIPADST_FLIPADST = 6 { highbd_iadst4, highbd_iadst4 }, // ADST_FLIPADST = 7 { highbd_iadst4, highbd_iadst4 }, // FLIPADST_ADST = 8 { highbd_idst4, highbd_idst4 }, // DST_DST = 9 { highbd_idst4, vp9_highbd_idct4 }, // DST_DCT = 10 { vp9_highbd_idct4, highbd_idst4 }, // DCT_DST = 11 { highbd_idst4, highbd_iadst4 }, // DST_ADST = 12 { highbd_iadst4, highbd_idst4 }, // ADST_DST = 13 { highbd_idst4, highbd_iadst4 }, // DST_FLIPADST = 14 { highbd_iadst4, highbd_idst4 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].rows(input, out[i], bd); input += 4; } // transpose for (i = 1 ; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4), bd); } } } static void highbd_iadst8(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[7]; tran_low_t x1 = input[0]; tran_low_t x2 = input[5]; tran_low_t x3 = input[2]; tran_low_t x4 = input[3]; tran_low_t x5 = input[4]; tran_low_t x6 = input[1]; tran_low_t x7 = input[6]; (void) bd; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { vpx_memset(output, 0, 8 * sizeof(*output)); return; } // stage 1 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; s1 = cospi_30_64 * x0 - cospi_2_64 * x1; s2 = cospi_10_64 * x2 + cospi_22_64 * x3; s3 = cospi_22_64 * x2 - cospi_10_64 * x3; s4 = cospi_18_64 * x4 + cospi_14_64 * x5; s5 = cospi_14_64 * x4 - cospi_18_64 * x5; s6 = cospi_26_64 * x6 + cospi_6_64 * x7; s7 = cospi_6_64 * x6 - cospi_26_64 * x7; x0 = WRAPLOW(dct_const_round_shift(s0 + s4), bd); x1 = WRAPLOW(dct_const_round_shift(s1 + s5), bd); x2 = WRAPLOW(dct_const_round_shift(s2 + s6), bd); x3 = WRAPLOW(dct_const_round_shift(s3 + s7), bd); x4 = WRAPLOW(dct_const_round_shift(s0 - s4), bd); x5 = WRAPLOW(dct_const_round_shift(s1 - s5), bd); x6 = WRAPLOW(dct_const_round_shift(s2 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s3 - s7), bd); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = cospi_8_64 * x4 + cospi_24_64 * x5; s5 = cospi_24_64 * x4 - cospi_8_64 * x5; s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; s7 = cospi_8_64 * x6 + cospi_24_64 * x7; x0 = WRAPLOW(s0 + s2, bd); x1 = WRAPLOW(s1 + s3, bd); x2 = WRAPLOW(s0 - s2, bd); x3 = WRAPLOW(s1 - s3, bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), bd); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), bd); // stage 3 s2 = cospi_16_64 * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (x6 - x7); x2 = WRAPLOW(dct_const_round_shift(s2), bd); x3 = WRAPLOW(dct_const_round_shift(s3), bd); x6 = WRAPLOW(dct_const_round_shift(s6), bd); x7 = WRAPLOW(dct_const_round_shift(s7), bd); output[0] = WRAPLOW(x0, bd); output[1] = WRAPLOW(-x4, bd); output[2] = WRAPLOW(x6, bd); output[3] = WRAPLOW(-x2, bd); output[4] = WRAPLOW(x3, bd); output[5] = WRAPLOW(-x7, bd); output[6] = WRAPLOW(x5, bd); output[7] = WRAPLOW(-x1, bd); } static const highbd_transform_2d HIGH_IHT_8[] = { { vp9_highbd_idct8, vp9_highbd_idct8 }, // DCT_DCT = 0 { highbd_iadst8, vp9_highbd_idct8 }, // ADST_DCT = 1 { vp9_highbd_idct8, highbd_iadst8 }, // DCT_ADST = 2 { highbd_iadst8, highbd_iadst8 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { highbd_iadst8, vp9_highbd_idct8 }, // FLIPADST_DCT = 4 { vp9_highbd_idct8, highbd_iadst8 }, // DCT_FLIPADST = 5 { highbd_iadst8, highbd_iadst8 }, // FLIPADST_FLIPADST = 6 { highbd_iadst8, highbd_iadst8 }, // ADST_FLIPADST = 7 { highbd_iadst8, highbd_iadst8 }, // FLIPADST_ADST = 8 { highbd_idst8, highbd_idst8 }, // DST_DST = 9 { highbd_idst8, vp9_highbd_idct8 }, // DST_DCT = 10 { vp9_highbd_idct8, highbd_idst8 }, // DCT_DST = 11 { highbd_idst8, highbd_iadst8 }, // DST_ADST = 12 { highbd_iadst8, highbd_idst8 }, // ADST_DST = 13 { highbd_idst8, highbd_iadst8 }, // DST_FLIPADST = 14 { highbd_iadst8, highbd_idst8 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].rows(input, out[i], bd); input += 8; } // transpose for (i = 1 ; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void vp9_highbd_idct8x8_10_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. // Only first 4 row has non-zero coefs. for (i = 0; i < 4; ++i) { vp9_highbd_idct8(input, outptr, bd); input += 8; outptr += 8; } // Then transform columns. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; vp9_highbd_idct8(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } void vp9_highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[0/2]; step1[1] = input[16/2]; step1[2] = input[8/2]; step1[3] = input[24/2]; step1[4] = input[4/2]; step1[5] = input[20/2]; step1[6] = input[12/2]; step1[7] = input[28/2]; step1[8] = input[2/2]; step1[9] = input[18/2]; step1[10] = input[10/2]; step1[11] = input[26/2]; step1[12] = input[6/2]; step1[13] = input[22/2]; step1[14] = input[14/2]; step1[15] = input[30/2]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = WRAPLOW(step2[8] + step2[9], bd); step1[9] = WRAPLOW(step2[8] - step2[9], bd); step1[10] = WRAPLOW(-step2[10] + step2[11], bd); step1[11] = WRAPLOW(step2[10] + step2[11], bd); step1[12] = WRAPLOW(step2[12] + step2[13], bd); step1[13] = WRAPLOW(step2[12] - step2[13], bd); step1[14] = WRAPLOW(-step2[14] + step2[15], bd); step1[15] = WRAPLOW(step2[14] + step2[15], bd); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], bd); step1[1] = WRAPLOW(step2[1] + step2[2], bd); step1[2] = WRAPLOW(step2[1] - step2[2], bd); step1[3] = WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], bd); step1[9] = WRAPLOW(step2[9] + step2[10], bd); step1[10] = WRAPLOW(step2[9] - step2[10], bd); step1[11] = WRAPLOW(step2[8] - step2[11], bd); step1[12] = WRAPLOW(-step2[12] + step2[15], bd); step1[13] = WRAPLOW(-step2[13] + step2[14], bd); step1[14] = WRAPLOW(step2[13] + step2[14], bd); step1[15] = WRAPLOW(step2[12] + step2[15], bd); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], bd); step2[1] = WRAPLOW(step1[1] + step1[6], bd); step2[2] = WRAPLOW(step1[2] + step1[5], bd); step2[3] = WRAPLOW(step1[3] + step1[4], bd); step2[4] = WRAPLOW(step1[3] - step1[4], bd); step2[5] = WRAPLOW(step1[2] - step1[5], bd); step2[6] = WRAPLOW(step1[1] - step1[6], bd); step2[7] = WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], bd); output[1] = WRAPLOW(step2[1] + step2[14], bd); output[2] = WRAPLOW(step2[2] + step2[13], bd); output[3] = WRAPLOW(step2[3] + step2[12], bd); output[4] = WRAPLOW(step2[4] + step2[11], bd); output[5] = WRAPLOW(step2[5] + step2[10], bd); output[6] = WRAPLOW(step2[6] + step2[9], bd); output[7] = WRAPLOW(step2[7] + step2[8], bd); output[8] = WRAPLOW(step2[7] - step2[8], bd); output[9] = WRAPLOW(step2[6] - step2[9], bd); output[10] = WRAPLOW(step2[5] - step2[10], bd); output[11] = WRAPLOW(step2[4] - step2[11], bd); output[12] = WRAPLOW(step2[3] - step2[12], bd); output[13] = WRAPLOW(step2[2] - step2[13], bd); output[14] = WRAPLOW(step2[1] - step2[14], bd); output[15] = WRAPLOW(step2[0] - step2[15], bd); } void vp9_highbd_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. for (i = 0; i < 16; ++i) { vp9_highbd_idct16(input, outptr, bd); input += 16; outptr += 16; } // Then transform columns. for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; vp9_highbd_idct16(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } static void highbd_iadst16(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; tran_high_t s9, s10, s11, s12, s13, s14, s15; tran_low_t x0 = input[15]; tran_low_t x1 = input[0]; tran_low_t x2 = input[13]; tran_low_t x3 = input[2]; tran_low_t x4 = input[11]; tran_low_t x5 = input[4]; tran_low_t x6 = input[9]; tran_low_t x7 = input[6]; tran_low_t x8 = input[7]; tran_low_t x9 = input[8]; tran_low_t x10 = input[5]; tran_low_t x11 = input[10]; tran_low_t x12 = input[3]; tran_low_t x13 = input[12]; tran_low_t x14 = input[1]; tran_low_t x15 = input[14]; (void) bd; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15)) { vpx_memset(output, 0, 16 * sizeof(*output)); return; } // stage 1 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; s1 = x0 * cospi_31_64 - x1 * cospi_1_64; s2 = x2 * cospi_5_64 + x3 * cospi_27_64; s3 = x2 * cospi_27_64 - x3 * cospi_5_64; s4 = x4 * cospi_9_64 + x5 * cospi_23_64; s5 = x4 * cospi_23_64 - x5 * cospi_9_64; s6 = x6 * cospi_13_64 + x7 * cospi_19_64; s7 = x6 * cospi_19_64 - x7 * cospi_13_64; s8 = x8 * cospi_17_64 + x9 * cospi_15_64; s9 = x8 * cospi_15_64 - x9 * cospi_17_64; s10 = x10 * cospi_21_64 + x11 * cospi_11_64; s11 = x10 * cospi_11_64 - x11 * cospi_21_64; s12 = x12 * cospi_25_64 + x13 * cospi_7_64; s13 = x12 * cospi_7_64 - x13 * cospi_25_64; s14 = x14 * cospi_29_64 + x15 * cospi_3_64; s15 = x14 * cospi_3_64 - x15 * cospi_29_64; x0 = WRAPLOW(dct_const_round_shift(s0 + s8), bd); x1 = WRAPLOW(dct_const_round_shift(s1 + s9), bd); x2 = WRAPLOW(dct_const_round_shift(s2 + s10), bd); x3 = WRAPLOW(dct_const_round_shift(s3 + s11), bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s12), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s13), bd); x6 = WRAPLOW(dct_const_round_shift(s6 + s14), bd); x7 = WRAPLOW(dct_const_round_shift(s7 + s15), bd); x8 = WRAPLOW(dct_const_round_shift(s0 - s8), bd); x9 = WRAPLOW(dct_const_round_shift(s1 - s9), bd); x10 = WRAPLOW(dct_const_round_shift(s2 - s10), bd); x11 = WRAPLOW(dct_const_round_shift(s3 - s11), bd); x12 = WRAPLOW(dct_const_round_shift(s4 - s12), bd); x13 = WRAPLOW(dct_const_round_shift(s5 - s13), bd); x14 = WRAPLOW(dct_const_round_shift(s6 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s7 - s15), bd); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4; s5 = x5; s6 = x6; s7 = x7; s8 = x8 * cospi_4_64 + x9 * cospi_28_64; s9 = x8 * cospi_28_64 - x9 * cospi_4_64; s10 = x10 * cospi_20_64 + x11 * cospi_12_64; s11 = x10 * cospi_12_64 - x11 * cospi_20_64; s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; s13 = x12 * cospi_4_64 + x13 * cospi_28_64; s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; s15 = x14 * cospi_20_64 + x15 * cospi_12_64; x0 = WRAPLOW(s0 + s4, bd); x1 = WRAPLOW(s1 + s5, bd); x2 = WRAPLOW(s2 + s6, bd); x3 = WRAPLOW(s3 + s7, bd); x4 = WRAPLOW(s0 - s4, bd); x5 = WRAPLOW(s1 - s5, bd); x6 = WRAPLOW(s2 - s6, bd); x7 = WRAPLOW(s3 - s7, bd); x8 = WRAPLOW(dct_const_round_shift(s8 + s12), bd); x9 = WRAPLOW(dct_const_round_shift(s9 + s13), bd); x10 = WRAPLOW(dct_const_round_shift(s10 + s14), bd); x11 = WRAPLOW(dct_const_round_shift(s11 + s15), bd); x12 = WRAPLOW(dct_const_round_shift(s8 - s12), bd); x13 = WRAPLOW(dct_const_round_shift(s9 - s13), bd); x14 = WRAPLOW(dct_const_round_shift(s10 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s11 - s15), bd); // stage 3 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4 * cospi_8_64 + x5 * cospi_24_64; s5 = x4 * cospi_24_64 - x5 * cospi_8_64; s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; s7 = x6 * cospi_8_64 + x7 * cospi_24_64; s8 = x8; s9 = x9; s10 = x10; s11 = x11; s12 = x12 * cospi_8_64 + x13 * cospi_24_64; s13 = x12 * cospi_24_64 - x13 * cospi_8_64; s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; s15 = x14 * cospi_8_64 + x15 * cospi_24_64; x0 = WRAPLOW(s0 + s2, bd); x1 = WRAPLOW(s1 + s3, bd); x2 = WRAPLOW(s0 - s2, bd); x3 = WRAPLOW(s1 - s3, bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), bd); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), bd); x8 = WRAPLOW(s8 + s10, bd); x9 = WRAPLOW(s9 + s11, bd); x10 = WRAPLOW(s8 - s10, bd); x11 = WRAPLOW(s9 - s11, bd); x12 = WRAPLOW(dct_const_round_shift(s12 + s14), bd); x13 = WRAPLOW(dct_const_round_shift(s13 + s15), bd); x14 = WRAPLOW(dct_const_round_shift(s12 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s13 - s15), bd); // stage 4 s2 = (- cospi_16_64) * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (-x6 + x7); s10 = cospi_16_64 * (x10 + x11); s11 = cospi_16_64 * (-x10 + x11); s14 = (- cospi_16_64) * (x14 + x15); s15 = cospi_16_64 * (x14 - x15); x2 = WRAPLOW(dct_const_round_shift(s2), bd); x3 = WRAPLOW(dct_const_round_shift(s3), bd); x6 = WRAPLOW(dct_const_round_shift(s6), bd); x7 = WRAPLOW(dct_const_round_shift(s7), bd); x10 = WRAPLOW(dct_const_round_shift(s10), bd); x11 = WRAPLOW(dct_const_round_shift(s11), bd); x14 = WRAPLOW(dct_const_round_shift(s14), bd); x15 = WRAPLOW(dct_const_round_shift(s15), bd); output[0] = WRAPLOW(x0, bd); output[1] = WRAPLOW(-x8, bd); output[2] = WRAPLOW(x12, bd); output[3] = WRAPLOW(-x4, bd); output[4] = WRAPLOW(x6, bd); output[5] = WRAPLOW(x14, bd); output[6] = WRAPLOW(x10, bd); output[7] = WRAPLOW(x2, bd); output[8] = WRAPLOW(x3, bd); output[9] = WRAPLOW(x11, bd); output[10] = WRAPLOW(x15, bd); output[11] = WRAPLOW(x7, bd); output[12] = WRAPLOW(x5, bd); output[13] = WRAPLOW(-x13, bd); output[14] = WRAPLOW(x9, bd); output[15] = WRAPLOW(-x1, bd); } static const highbd_transform_2d HIGH_IHT_16[] = { { vp9_highbd_idct16, vp9_highbd_idct16 }, // DCT_DCT = 0 { highbd_iadst16, vp9_highbd_idct16 }, // ADST_DCT = 1 { vp9_highbd_idct16, highbd_iadst16 }, // DCT_ADST = 2 { highbd_iadst16, highbd_iadst16 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { highbd_iadst16, vp9_highbd_idct16 }, // FLIPADST_DCT = 4 { vp9_highbd_idct16, highbd_iadst16 }, // DCT_FLIPADST = 5 { highbd_iadst16, highbd_iadst16 }, // FLIPADST_FLIPADST = 6 { highbd_iadst16, highbd_iadst16 }, // ADST_FLIPADST = 7 { highbd_iadst16, highbd_iadst16 }, // FLIPADST_ADST = 8 { highbd_idst16, highbd_idst16 }, // DST_DST = 9 { highbd_idst16, vp9_highbd_idct16 }, // DST_DCT = 10 { vp9_highbd_idct16, highbd_idst16 }, // DCT_DST = 11 { highbd_idst16, highbd_iadst16 }, // DST_ADST = 12 { highbd_iadst16, highbd_idst16 }, // ADST_DST = 13 { highbd_idst16, highbd_iadst16 }, // DST_FLIPADST = 14 { highbd_iadst16, highbd_idst16 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].rows(input, out[i], bd); input += 16; } // transpose for (i = 1 ; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } void vp9_highbd_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[16 * 16] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. Since all non-zero dct coefficients are in // upper-left 4x4 area, we only need to calculate first 4 rows here. for (i = 0; i < 4; ++i) { vp9_highbd_idct16(input, outptr, bd); input += 16; outptr += 16; } // Then transform columns. for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; vp9_highbd_idct16(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 16; ++j) { for (i = 0; i < 16; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } static void highbd_idct32(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[32], step2[32]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[0]; step1[1] = input[16]; step1[2] = input[8]; step1[3] = input[24]; step1[4] = input[4]; step1[5] = input[20]; step1[6] = input[12]; step1[7] = input[28]; step1[8] = input[2]; step1[9] = input[18]; step1[10] = input[10]; step1[11] = input[26]; step1[12] = input[6]; step1[13] = input[22]; step1[14] = input[14]; step1[15] = input[30]; temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64; temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64; step1[16] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[31] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64; temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[30] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64; temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64; temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[28] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64; temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64; temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64; temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64; temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[24] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[16] = WRAPLOW(step1[16] + step1[17], bd); step2[17] = WRAPLOW(step1[16] - step1[17], bd); step2[18] = WRAPLOW(-step1[18] + step1[19], bd); step2[19] = WRAPLOW(step1[18] + step1[19], bd); step2[20] = WRAPLOW(step1[20] + step1[21], bd); step2[21] = WRAPLOW(step1[20] - step1[21], bd); step2[22] = WRAPLOW(-step1[22] + step1[23], bd); step2[23] = WRAPLOW(step1[22] + step1[23], bd); step2[24] = WRAPLOW(step1[24] + step1[25], bd); step2[25] = WRAPLOW(step1[24] - step1[25], bd); step2[26] = WRAPLOW(-step1[26] + step1[27], bd); step2[27] = WRAPLOW(step1[26] + step1[27], bd); step2[28] = WRAPLOW(step1[28] + step1[29], bd); step2[29] = WRAPLOW(step1[28] - step1[29], bd); step2[30] = WRAPLOW(-step1[30] + step1[31], bd); step2[31] = WRAPLOW(step1[30] + step1[31], bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = WRAPLOW(step2[8] + step2[9], bd); step1[9] = WRAPLOW(step2[8] - step2[9], bd); step1[10] = WRAPLOW(-step2[10] + step2[11], bd); step1[11] = WRAPLOW(step2[10] + step2[11], bd); step1[12] = WRAPLOW(step2[12] + step2[13], bd); step1[13] = WRAPLOW(step2[12] - step2[13], bd); step1[14] = WRAPLOW(-step2[14] + step2[15], bd); step1[15] = WRAPLOW(step2[14] + step2[15], bd); step1[16] = step2[16]; step1[31] = step2[31]; temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[30] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[19] = step2[19]; step1[20] = step2[20]; temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[23] = step2[23]; step1[24] = step2[24]; step1[27] = step2[27]; step1[28] = step2[28]; // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; step2[16] = WRAPLOW(step1[16] + step1[19], bd); step2[17] = WRAPLOW(step1[17] + step1[18], bd); step2[18] = WRAPLOW(step1[17] - step1[18], bd); step2[19] = WRAPLOW(step1[16] - step1[19], bd); step2[20] = WRAPLOW(-step1[20] + step1[23], bd); step2[21] = WRAPLOW(-step1[21] + step1[22], bd); step2[22] = WRAPLOW(step1[21] + step1[22], bd); step2[23] = WRAPLOW(step1[20] + step1[23], bd); step2[24] = WRAPLOW(step1[24] + step1[27], bd); step2[25] = WRAPLOW(step1[25] + step1[26], bd); step2[26] = WRAPLOW(step1[25] - step1[26], bd); step2[27] = WRAPLOW(step1[24] - step1[27], bd); step2[28] = WRAPLOW(-step1[28] + step1[31], bd); step2[29] = WRAPLOW(-step1[29] + step1[30], bd); step2[30] = WRAPLOW(step1[29] + step1[30], bd); step2[31] = WRAPLOW(step1[28] + step1[31], bd); // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], bd); step1[1] = WRAPLOW(step2[1] + step2[2], bd); step1[2] = WRAPLOW(step2[1] - step2[2], bd); step1[3] = WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], bd); step1[9] = WRAPLOW(step2[9] + step2[10], bd); step1[10] = WRAPLOW(step2[9] - step2[10], bd); step1[11] = WRAPLOW(step2[8] - step2[11], bd); step1[12] = WRAPLOW(-step2[12] + step2[15], bd); step1[13] = WRAPLOW(-step2[13] + step2[14], bd); step1[14] = WRAPLOW(step2[13] + step2[14], bd); step1[15] = WRAPLOW(step2[12] + step2[15], bd); step1[16] = step2[16]; step1[17] = step2[17]; temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[28] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], bd); step2[1] = WRAPLOW(step1[1] + step1[6], bd); step2[2] = WRAPLOW(step1[2] + step1[5], bd); step2[3] = WRAPLOW(step1[3] + step1[4], bd); step2[4] = WRAPLOW(step1[3] - step1[4], bd); step2[5] = WRAPLOW(step1[2] - step1[5], bd); step2[6] = WRAPLOW(step1[1] - step1[6], bd); step2[7] = WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; step2[16] = WRAPLOW(step1[16] + step1[23], bd); step2[17] = WRAPLOW(step1[17] + step1[22], bd); step2[18] = WRAPLOW(step1[18] + step1[21], bd); step2[19] = WRAPLOW(step1[19] + step1[20], bd); step2[20] = WRAPLOW(step1[19] - step1[20], bd); step2[21] = WRAPLOW(step1[18] - step1[21], bd); step2[22] = WRAPLOW(step1[17] - step1[22], bd); step2[23] = WRAPLOW(step1[16] - step1[23], bd); step2[24] = WRAPLOW(-step1[24] + step1[31], bd); step2[25] = WRAPLOW(-step1[25] + step1[30], bd); step2[26] = WRAPLOW(-step1[26] + step1[29], bd); step2[27] = WRAPLOW(-step1[27] + step1[28], bd); step2[28] = WRAPLOW(step1[27] + step1[28], bd); step2[29] = WRAPLOW(step1[26] + step1[29], bd); step2[30] = WRAPLOW(step1[25] + step1[30], bd); step2[31] = WRAPLOW(step1[24] + step1[31], bd); // stage 7 step1[0] = WRAPLOW(step2[0] + step2[15], bd); step1[1] = WRAPLOW(step2[1] + step2[14], bd); step1[2] = WRAPLOW(step2[2] + step2[13], bd); step1[3] = WRAPLOW(step2[3] + step2[12], bd); step1[4] = WRAPLOW(step2[4] + step2[11], bd); step1[5] = WRAPLOW(step2[5] + step2[10], bd); step1[6] = WRAPLOW(step2[6] + step2[9], bd); step1[7] = WRAPLOW(step2[7] + step2[8], bd); step1[8] = WRAPLOW(step2[7] - step2[8], bd); step1[9] = WRAPLOW(step2[6] - step2[9], bd); step1[10] = WRAPLOW(step2[5] - step2[10], bd); step1[11] = WRAPLOW(step2[4] - step2[11], bd); step1[12] = WRAPLOW(step2[3] - step2[12], bd); step1[13] = WRAPLOW(step2[2] - step2[13], bd); step1[14] = WRAPLOW(step2[1] - step2[14], bd); step1[15] = WRAPLOW(step2[0] - step2[15], bd); step1[16] = step2[16]; step1[17] = step2[17]; step1[18] = step2[18]; step1[19] = step2[19]; temp1 = (-step2[20] + step2[27]) * cospi_16_64; temp2 = (step2[20] + step2[27]) * cospi_16_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[21] + step2[26]) * cospi_16_64; temp2 = (step2[21] + step2[26]) * cospi_16_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[22] + step2[25]) * cospi_16_64; temp2 = (step2[22] + step2[25]) * cospi_16_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[23] + step2[24]) * cospi_16_64; temp2 = (step2[23] + step2[24]) * cospi_16_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[24] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[28] = step2[28]; step1[29] = step2[29]; step1[30] = step2[30]; step1[31] = step2[31]; // final stage output[0] = WRAPLOW(step1[0] + step1[31], bd); output[1] = WRAPLOW(step1[1] + step1[30], bd); output[2] = WRAPLOW(step1[2] + step1[29], bd); output[3] = WRAPLOW(step1[3] + step1[28], bd); output[4] = WRAPLOW(step1[4] + step1[27], bd); output[5] = WRAPLOW(step1[5] + step1[26], bd); output[6] = WRAPLOW(step1[6] + step1[25], bd); output[7] = WRAPLOW(step1[7] + step1[24], bd); output[8] = WRAPLOW(step1[8] + step1[23], bd); output[9] = WRAPLOW(step1[9] + step1[22], bd); output[10] = WRAPLOW(step1[10] + step1[21], bd); output[11] = WRAPLOW(step1[11] + step1[20], bd); output[12] = WRAPLOW(step1[12] + step1[19], bd); output[13] = WRAPLOW(step1[13] + step1[18], bd); output[14] = WRAPLOW(step1[14] + step1[17], bd); output[15] = WRAPLOW(step1[15] + step1[16], bd); output[16] = WRAPLOW(step1[15] - step1[16], bd); output[17] = WRAPLOW(step1[14] - step1[17], bd); output[18] = WRAPLOW(step1[13] - step1[18], bd); output[19] = WRAPLOW(step1[12] - step1[19], bd); output[20] = WRAPLOW(step1[11] - step1[20], bd); output[21] = WRAPLOW(step1[10] - step1[21], bd); output[22] = WRAPLOW(step1[9] - step1[22], bd); output[23] = WRAPLOW(step1[8] - step1[23], bd); output[24] = WRAPLOW(step1[7] - step1[24], bd); output[25] = WRAPLOW(step1[6] - step1[25], bd); output[26] = WRAPLOW(step1[5] - step1[26], bd); output[27] = WRAPLOW(step1[4] - step1[27], bd); output[28] = WRAPLOW(step1[3] - step1[28], bd); output[29] = WRAPLOW(step1[2] - step1[29], bd); output[30] = WRAPLOW(step1[1] - step1[30], bd); output[31] = WRAPLOW(step1[0] - step1[31], bd); } void vp9_highbd_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows for (i = 0; i < 32; ++i) { tran_low_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) highbd_idct32(input, outptr, bd); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; highbd_idct32(temp_in, temp_out, bd); for (j = 0; j < 32; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[32 * 32] = {0}; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows // Only upper-left 8x8 has non-zero coeff. for (i = 0; i < 8; ++i) { highbd_idct32(input, outptr, bd); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; highbd_idct32(temp_in, temp_out, bd); for (j = 0; j < 32; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; int a1; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 32; ++j) { for (i = 0; i < 32; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } // idct void vp9_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vp9_highbd_idct4x4_16_add(input, dest, stride, bd); else vp9_highbd_idct4x4_1_add(input, dest, stride, bd); } void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vp9_highbd_iwht4x4_16_add(input, dest, stride, bd); else vp9_highbd_iwht4x4_1_add(input, dest, stride, bd); } void vp9_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. // DC only DCT coefficient if (eob == 1) { vp9_highbd_idct8x8_1_add(input, dest, stride, bd); } else if (eob <= 10) { vp9_highbd_idct8x8_10_add(input, dest, stride, bd); } else { vp9_highbd_idct8x8_64_add(input, dest, stride, bd); } } void vp9_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. // DC only DCT coefficient. if (eob == 1) { vp9_highbd_idct16x16_1_add(input, dest, stride, bd); } else if (eob <= 10) { vp9_highbd_idct16x16_10_add(input, dest, stride, bd); } else { vp9_highbd_idct16x16_256_add(input, dest, stride, bd); } } void vp9_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // Non-zero coeff only in upper-left 8x8 if (eob == 1) { vp9_highbd_idct32x32_1_add(input, dest, stride, bd); } else if (eob <= 34) { vp9_highbd_idct32x32_34_add(input, dest, stride, bd); } else { vp9_highbd_idct32x32_1024_add(input, dest, stride, bd); } } // iht void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct4x4_add(input, dest, stride, eob, bd); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_highbd_iht4x4_16_add_c(input, dest, stride, tx_type, bd); #endif // CONFIG_EXT_TX } else { vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd); } } void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct8x8_add(input, dest, stride, eob, bd); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_highbd_iht8x8_64_add_c(input, dest, stride, tx_type, bd); #endif // CONFIG_EXT_TX } else { vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd); } } void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct16x16_add(input, dest, stride, eob, bd); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_highbd_iht16x16_256_add_c(input, dest, stride, tx_type, bd); #endif // CONFIG_EXT_TX } else { vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd); } } #if CONFIG_TX64X64 void vp9_highbd_idct64x64_4096_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // vp9_clear_system_state(); // Make it simd safe : __asm emms; { double out[64 * 64], out2[64 * 64]; int i, j; // First transform rows for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = input[j + i * 64]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out[j + i * 64] = temp_out[j]; } // Then transform columns for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = out[j * 64 + i]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out2[j * 64 + i] = temp_out[j]; } for (j = 0; j < 64; ++j) { for (i = 0; i < 64; ++i) dest[i] = highbd_clip_pixel_add( dest[i], round(out2[j * 64 + i] / 128), bd); dest += stride; } } // vp9_clear_system_state(); // Make it simd safe : __asm emms; } void vp9_highbd_idct64x64_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { (void) eob; vp9_highbd_idct64x64_4096_add_c(input, dest, stride, bd); } #endif // CONFIG_TX64X64 #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_SR_MODE void vp9_iwht4x4_16_c(const tran_low_t *input, int16_t *dest, int stride) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_high_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = WRAPLOW(a1, 8); op[1] = WRAPLOW(b1, 8); op[2] = WRAPLOW(c1, 8); op[3] = WRAPLOW(d1, 8); ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; dest[stride * 0] = a1; dest[stride * 1] = b1; dest[stride * 2] = c1; dest[stride * 3] = d1; ip++; dest++; } } void vp9_iwht4x4_1_c(const tran_low_t *in, int16_t *dest, int dest_stride) { int i; tran_high_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = WRAPLOW(a1, 8); op[1] = op[2] = op[3] = WRAPLOW(e1, 8); ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = a1; dest[dest_stride * 1] = e1; dest[dest_stride * 2] = e1; dest[dest_stride * 3] = e1; ip++; dest++; } } void vp9_idct4x4_16_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[4 * 4]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[4], temp_out[4]; // Rows for (i = 0; i < 4; ++i) { idct4(input, outptr); input += 4; outptr += 4; } // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; idct4(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 4); } } } void vp9_idct4x4_1_c(const tran_low_t *input, int16_t *dest, int dest_stride) { int i; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 4); for (i = 0; i < 4; i++) { dest[0] = a1; dest[1] = a1; dest[2] = a1; dest[3] = a1; dest += dest_stride; } } void vp9_idct8x8_64_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows for (i = 0; i < 8; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 5); } } } void vp9_idct8x8_1_c(const tran_low_t *input, int16_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 5); for (j = 0; j < 8; ++j) { for (i = 0; i < 8; ++i) dest[i] = a1; dest += stride; } } void vp9_iht4x4_16_c(const tran_low_t *input, int16_t *dest, int stride, int tx_type) { const transform_2d IHT_4[] = { { idct4, idct4 }, // DCT_DCT = 0 { iadst4, idct4 }, // ADST_DCT = 1 { idct4, iadst4 }, // DCT_ADST = 2 { iadst4, iadst4 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { iadst4, idct4 }, // FLIPADST_DCT = 4 { idct4, iadst4 }, // DCT_FLIPADST = 5 { iadst4, iadst4 }, // FLIPADST_FLIPADST = 6 { iadst4, iadst4 }, // ADST_FLIPADST = 7 { iadst4, iadst4 }, // FLIPADST_ADST = 8 { idst4, idst4 }, // DST_DST = 9 { idst4, idct4 }, // DST_DCT = 10 { idct4, idst4 }, // DCT_DST = 11 { idst4, iadst4 }, // DST_ADST = 12 { iadst4, idst4 }, // ADST_DST = 13 { idst4, iadst4 }, // DST_FLIPADST = 14 { iadst4, idst4 }, // FLIPADST_DST = 15 #endif // CONFIG_EXT_TX }; int i, j; tran_low_t out[4 * 4]; tran_low_t *outptr = out; tran_low_t temp_in[4], temp_out[4]; // FIXME: If the SR_MODE experiment is resurrected, then this function must // be fixed to handle the FLIPADST cases by actually flipping its output // See the other vp9_iht*add_c functions #if CONFIG_EXT_TX assert(tx_type != FLIPADST_DCT); assert(tx_type != DCT_FLIPADST); assert(tx_type != FLIPADST_FLIPADST); assert(tx_type != ADST_FLIPADST); assert(tx_type != FLIPADST_ADST); assert(tx_type != DST_FLIPADST); assert(tx_type != FLIPADST_DST); #endif // CONFIG_EXT_TX // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, outptr); input += 4; outptr += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; IHT_4[tx_type].cols(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 4); } } } void vp9_iht8x8_64_c(const tran_low_t *input, int16_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[8 * 8]; tran_low_t *outptr = out; tran_low_t temp_in[8], temp_out[8]; const transform_2d ht = IHT_8[tx_type]; // FIXME: If the SR_MODE experiment is resurrected, then this function must // be fixed to handle the FLIPADST cases by actually flipping its output // See the other vp9_iht*add_c functions #if CONFIG_EXT_TX assert(tx_type != FLIPADST_DCT); assert(tx_type != DCT_FLIPADST); assert(tx_type != FLIPADST_FLIPADST); assert(tx_type != ADST_FLIPADST); assert(tx_type != FLIPADST_ADST); assert(tx_type != DST_FLIPADST); assert(tx_type != FLIPADST_DST); #endif // CONFIG_EXT_TX // inverse transform row vectors for (i = 0; i < 8; ++i) { ht.rows(input, outptr); input += 8; outptr += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 5); } } } void vp9_idct8x8_12_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows // only first 4 row has non-zero coefs for (i = 0; i < 4; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 5); } } } void vp9_idct16x16_256_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows for (i = 0; i < 16; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 6); } } } void vp9_iht16x16_256_c(const tran_low_t *input, int16_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[16 * 16]; tran_low_t *outptr = out; tran_low_t temp_in[16], temp_out[16]; const transform_2d ht = IHT_16[tx_type]; // FIXME: If the SR_MODE experiment is resurrected, then this function must // be fixed to handle the FLIPADST cases by actually flipping its output // See the other vp9_iht*add_c functions #if CONFIG_EXT_TX assert(tx_type != FLIPADST_DCT); assert(tx_type != DCT_FLIPADST); assert(tx_type != FLIPADST_FLIPADST); assert(tx_type != ADST_FLIPADST); assert(tx_type != FLIPADST_ADST); assert(tx_type != DST_FLIPADST); assert(tx_type != FLIPADST_DST); #endif // CONFIG_EXT_TX // Rows for (i = 0; i < 16; ++i) { ht.rows(input, outptr); input += 16; outptr += 16; } // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 6); } } } void vp9_idct16x16_10_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[16 * 16] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows. Since all non-zero dct coefficients are in // upper-left 4x4 area, we only need to calculate first 4 rows here. for (i = 0; i < 4; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 6); } } } void vp9_idct16x16_1_c(const tran_low_t *input, int16_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 16; ++j) { for (i = 0; i < 16; ++i) dest[i] = a1; dest += stride; } } void vp9_idct32x32_1024_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows for (i = 0; i < 32; ++i) { int16_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) idct32(input, outptr); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 6); } } } void vp9_idct32x32_34_c(const tran_low_t *input, int16_t *dest, int stride) { tran_low_t out[32 * 32] = {0}; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows // only upper-left 8x8 has non-zero coeff for (i = 0; i < 8; ++i) { idct32(input, outptr); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 6); } } } void vp9_idct32x32_1_c(const tran_low_t *input, int16_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 32; ++j) { for (i = 0; i < 32; ++i) dest[i] = a1; dest += stride; } } // idct void vp9_idct4x4(const tran_low_t *input, int16_t *dest, int stride, int eob) { if (eob > 1) vp9_idct4x4_16(input, dest, stride); else vp9_idct4x4_1(input, dest, stride); } void vp9_iwht4x4(const tran_low_t *input, int16_t *dest, int stride, int eob) { if (eob > 1) vp9_iwht4x4_16(input, dest, stride); else vp9_iwht4x4_1(input, dest, stride); } void vp9_idct8x8(const tran_low_t *input, int16_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. if (eob == 1) // DC only DCT coefficient vp9_idct8x8_1(input, dest, stride); else if (eob <= 12) vp9_idct8x8_12(input, dest, stride); else vp9_idct8x8_64(input, dest, stride); } void vp9_idct16x16(const tran_low_t *input, int16_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ vp9_idct16x16_1(input, dest, stride); else if (eob <= 10) vp9_idct16x16_10(input, dest, stride); else vp9_idct16x16_256(input, dest, stride); } void vp9_idct32x32(const tran_low_t *input, int16_t *dest, int stride, int eob) { if (eob == 1) vp9_idct32x32_1(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 vp9_idct32x32_34(input, dest, stride); else vp9_idct32x32_1024(input, dest, stride); } // iht void vp9_iht4x4(TX_TYPE tx_type, const tran_low_t *input, int16_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct4x4(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht4x4_16_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht4x4_16(input, dest, stride, tx_type); } } void vp9_iht8x8(TX_TYPE tx_type, const tran_low_t *input, int16_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct8x8(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht8x8_64_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht8x8_64(input, dest, stride, tx_type); } } void vp9_iht16x16(TX_TYPE tx_type, const tran_low_t *input, int16_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct16x16(input, dest, stride, eob); #if CONFIG_EXT_TX } else if (is_dst_used(tx_type)) { vp9_iht16x16_256_c(input, dest, stride, tx_type); #endif // CONFIG_EXT_TX } else { vp9_iht16x16_256(input, dest, stride, tx_type); } } #if CONFIG_TX64X64 void vp9_idct64x64_4096_c(const tran_low_t *input, int16_t *dest, int stride) { // vp9_clear_system_state(); // Make it simd safe : __asm emms; { double out[64 * 64], out2[64 * 64]; int i, j; // First transform rows for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = input[j + i * 64]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out[j + i * 64] = temp_out[j]; } // Then transform columns for (i = 0; i < 64; ++i) { double temp_in[64], temp_out[64]; for (j = 0; j < 64; ++j) temp_in[j] = out[j * 64 + i]; butterfly_64_idct_1d(temp_in, temp_out, 1); for (j = 0; j < 64; ++j) out2[j * 64 + i] = temp_out[j]; } for (j = 0; j < 64; ++j) { for (i = 0; i < 64; ++i) dest[i] = round(out2[j * 64 + i] / 128); dest += stride; } } // vp9_clear_system_state(); // Make it simd safe : __asm emms; } void vp9_idct64x64(const tran_low_t *input, int16_t *dest, int stride, int eob) { (void) eob; vp9_idct64x64_4096_c(input, dest, stride); } #endif // CONFIG_TX64X64 #endif // CONFIG_SR_MODE