This reverts commit b5ea2fbc2c1554769848774c836aad262af95072. Further
testing showed noticable keyframe popping in some cases, reverting this
for now to give time for a proper fix.
Conflicts:
vp8/encoder/onyx_if.c
vp8/encoder/ratectrl.c
Change-Id: I159f53d1bf0e24c035754ab3ded8ccfd58fd04af
This patch fixes a bug in the interaction between the recode loop and
spatial resampling. If the codec was in a spatial resampling state,
and a subsequent iteration of the recode loop disables resampling,
then the source buffer must be reset to the unscaled source.
Change-Id: I4e4cd47b943f6cd26a47449dc7f4255b38e27c77
This change implemented same idea in change "Preload reference area
to an intermediate buffer in sub-pixel motion search." The changes
were made to vp8_find_best_sub_pixel_step() and vp8_find_best_half
_pixel_step() functions which are called when speed >= 5. Test
result (using tulip clip):
1. On Core2 Quad machine(Linux)
rt mode, speed (-5 ~ -8), encoding speed gain: 2% ~ 3%
rt mode, speed (-9 ~ -11), encoding speed gain: 1% ~ 2%
rt mode, speed (-12 ~ -14), no noticeable encoding speed gain
2. On Xeon machine(Linux)
Test on speed (-5 ~ -14) didn't show noticeable speed change.
Change-Id: I21bec2d6e7fbe541fcc0f4c0366bbdf3e2076aa2
There were some situations that the start motion vectors were
out of range. This fix adjusted range checks to make sure they
are checked and clamped.
Change-Id: Ife83b7fed0882bba6d1fa559b6e63c054fd5065d
sharpness was not recalculated in vp8cx_pick_filter_level_fast
remove last_filter_type. all values are calculated, don't need to update
the lfi data when it changes.
always use cm->sharpness_level. the extra indirection was annoying.
don't track last frame_type or sharpness_level manually. frame type
only matters for motion search and sharpness_level is taken care of in
frame_init
move function declarations to their proper header
Change-Id: I7ef037bd4bf8cf5e37d2d36bd03b5e22a2ad91db
In sub-pixel motion search, the search range is small(+/- 3 pixels).
Preload whole search area from reference buffer into a 32-byte
aligned buffer. Then in search, load reference data from this buffer
instead. This keeps data in cache, and reduces the crossing cache-
line penalty. For tulip clip, tests on Intel Core2 Quad machine(linux)
showed encoder speed improvement:
3.4% at --rt --cpu-used =-4
2.8% at --rt --cpu-used =-3
2.3% at --rt --cpu-used =-2
2.2% at --rt --cpu-used =-1
Test on Atom notebook showed only 1.1% speed improvement(speed=-4).
Test on Xeon machine also showed less improvement, since unaligned
data access latency is greatly reduced in newer cores.
Next, I will apply similar idea to other 2 sub-pixel search functions
for encoding speed > 4.
Make this change exclusively for x86 platforms.
Change-Id: Ia7bb9f56169eac0f01009fe2b2f2ab5b61d2eb2f
This is done by expanding luma row to 32-byte alignment, since
there is currently a bunch of code that assumes that
uv_stride == y_stride/2 (see, for example, vp8/common/postproc.c,
common/reconinter.c, common/arm/neon/recon16x16mb_neon.asm,
encoder/temporal_filter.c, and possibly others; I haven't done a
full audit).
It also uses replaces the hardcoded border of 16 in a number of
encoder buffers with VP8BORDERINPIXELS (currently 32), as the
chroma rows start at an offset of border/2.
Together, these two changes have the nice advantage that simply
dumping the frame memory as a contiguous blob produces a valid,
if padded, image.
Change-Id: Iaf5ea722ae5c82d5daa50f6e2dade9de753f1003
allowing the compiler to inline this function. For real-time
encodes, this gave a boost of 1% to 2.5%, depending on the
speed setting.
Change-Id: I3929d176cca086b4261267b848419d5bcff21c02
This patch attempts to improve the handling of CBR streams with
respect to the short term buffering requirements. The "buffer level"
is changed to be an average over the rc buffer, rather than a long
running average. Overshoot is also tracked over the same interval
and the golden frame targets suppressed accordingly to correct for
overly aggressive boosting.
Testing shows that this is fairly consistently positive in one
metric or another -- some clips that show significant decreases
in quality have better buffering characteristics, others show
improvenents in both.
Change-Id: I924c89aa9bdb210271f2e03311e63de3f1f8f920
Optimized C-code of the following functions:
- vp8_tokenize_mb
- tokenize1st_order_b
- tokenize2nd_order_b
Gives ~1-5% speed-up for RT encoding on Cortex-A8/A9
depending on encoding parameters.
Change-Id: I6be86104a589a06dcbc9ed3318e8bf264ef4176c
Do mvp clamping in full-pixel precision instead of 1/8-pixel
precision to avoid error caused by right shifting operation.
Also, further fixed the motion vector limit calculation in change:
b7480454706a6b15bf091e659cd6227ab373c1a6
Change-Id: Ied88a4f7ddfb0476eb9f7afc6ceeddbf209fffd7
Separate simple filter with reduced no. of parameters.
MB filter level picking based on precalculated table. Level table updated for
each frame. Inside and edge limits precalculated and updated just when
sharpness changes. HEV threshhold is constant.
ARM targets use scalars and others vectors.
Change works only with --target=generic-gnu
All other targets have to be updated!
Change-Id: I6b73aca6b525075b20129a371699b2561bd4d51c
Allow the encoder to inform the application that the encoded frame will not
be used as a reference.
Change-Id: I90e41962325ef73d44da03327deb340d6f7f4860
Motion vector limits are calculated using right shifts, which
could give wrong results for negative numbers. James Berry's
test on one clip showed encoder produced some artifacts. This
change fixed that.
Change-Id: I035fc02280b10455b7f6eb388f7c2e33b796b018
In this commit I have added an experimental function
that tests prediction quality either side of a central position
to calculate a suggested boost number for an ARF frame.
The function is passed an offset from the current position and
a number of frames to search forwards and backwards.
It returns a forward, backward and compound boost number.
The new code can be deactivated using #define NEW_BOOST 0
In its current default state the code searches forwards and backwards
from the proposed position of the next alt ref.
The the old code used a boost number calculated by scanning forward
from the previous GF up to the proposed alt ref frame position.
I have also added some code to try and prevent placement of a gf/arf
where there is a brief flash.
Change-Id: I98af789a5181148659f10dd5dd2ff2d4250cd51c
There were many instances in the code of vp8_coef_tokens and
vp8_coef_tokens-1, which was a preprocessor macro despite the naming
convention. Replace these with MAX_ENTROPY_TOKENS and ENTROPY_NODES,
respectively.
Change-Id: I72c4f6c7634c94e1fa066cd511471e5592c748da
With this commit frames can be received partition-by-partition
from the encoder and passed partition-by-partition to the
decoder.
At the encoder-side this makes it easier to split encoded
frames at partition boundaries, useful when packetizing
frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled,
several VPX_CODEC_CX_FRAME_PKT packets will be returned
from vpx_codec_get_cx_data(), containing one partition
each. The partition_id (starting at 0) specifies the decoding
order of the partitions. All partitions but the last has
the VPX_FRAME_IS_FRAGMENT flag set.
At the decoder this opens up the possibility of decoding partition
N even though partition N-1 was lost (given that independent
partitioning has been enabled in the encoder) if more info
about the missing parts of the stream is available through
external signaling.
Each partition is passed to the decoder through the
vpx_codec_decode() function, with the data pointer pointing
to the start of the partition, and with data_sz equal to the
size of the partition. Missing partitions can be signaled to
the decoder by setting data != NULL and data_sz = 0. When
all partitions have been given to the decoder "end of data"
should be signaled by calling vpx_codec_decode() with
data = NULL and data_sz = 0.
The first partition is the first partition according to the
VP8 bitstream + the uncompressed data chunk + DCT address
offsets if multiple residual partitions are used.
Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
Adding support in the encoder for generating
independent residual partitions by forcing
equal probabilities over the prev coef entropy
contexts.
Change-Id: I402f5c353255f3ca20eae2620af739f6a498cd21
I got this idea from Pascal (Thanks). Before encoding a macroblock,
copy it to a 16x16 buffer, and then read source data from there
instead. This will help keep the source data in cache, and help
with the performance.
Change-Id: Id05f4cb601299150511d59dcba0ae62c49b5b757
This reverts commit 212f6183739d448ad5fa2ccf1b4edd30829b2806.
Further testing shows that the overshoot accumulation/damping is too
aggressive on some clips. Allowing the accumulated overshoot to
decay and limiting to damping to golden frames shows some promise.
But some clips show significant overshoot in the buffer window, so
I think this still needs work.
Change-Id: Ic02a9ca34f55229f9cc04786f4fab54cdc1a3ef5
RDMULT/RDDIV defines a bit worth of distortion in term of sum squared
difference. This has also been used as errorperbit in subpixel motion
search, where the distortions computed as variance of the difference.
The variance of differences is different from sum squared differences
by amount of DC squared. Typically, for inter predicted MBs, this
difference averages around 10% between the two distortion, so this patch
introduces a 110% constant in deriving errorperbit from RDMULT/RDDIV.
Test on CIF set shows small but positive gain on overall PSNR (.03%)
and SSIM (.07%), overall impact on average PSNR is 0.
Change-Id: I95425f922d037b4d96083064a10c7cdd4948ee62
The starting points are always within the limits, and bounds
checking on these points is not needed. For speed < 5, the
encoded result changes a little because different treatment
is taken while starting point equals the bounds.
Change-Id: I09a402d310f51e305a3519f1601b1d17b05c6152