Whe auto keyframe insertion is enabled and conditions are right (scene change)
the encoder can decide to insert a key frame and does a re-encoding. This can
introduce extra latency. In RT mode we do not do the re-encoding of the current
frame but force the next frame to key frame.
Change-Id: I15c175fa845ac4c1a1f18bea3676e154669522a7
Reduce the number of sync points by letting each thread
continue imediatly with a new MB row.
Better multicore scaling, improves performance by 5-20% on ARM multicore.
Change-Id: Ic97e4d1c4886a842c85dd3539a93cb217188ed1b
This code fixes a bug in the calculation of
the minimum Q for alt ref frames.
It also allows an extended gf/arf interval for sections
of clips that completely static (or nearly so).
Change-Id: I1a21aaa16d4f0578e5f99b13bebd78d59403c73b
The CQ level was not using the q_trans[] array to convert
to a 0-127 range as per min and maxq
Experimental change to try and match the reconstruction
error for forced key frames approximately to that of the
previous frame by means of the recode loop. Though this
may cause extra recodes and the recode behavior has not
been optimized, it can only happen on forced key frames.
Change-Id: I1f7e42d526f1b1cb556dd461eff1a692bd1b5b2f
Where a key frame occurs because of a minimum interval
selected by the user, then these forced key frames ideally need
to be more closely matched in quality to the surrounding frame.
Change-Id: Ia55b1f047e77dc7fbd78379c45869554f25b3df7
Add a flag to always enable block4x4 search for speed=0 (good
quality) to guarantee no quality loss for speed0.
Change-Id: Ie04bbc25f7e6a33a7bfa30e05775d33148731c81
The merge includes hooks to for CQ mode and other code
changes merged from the test branch.
CQ mode attempts to maintain a more stable quantizer within a clip
whilst also trying to adhere to a guidline maximum bitrate.
The existing target data rate parameter is used to specify the
guideline maximum bitrate.
A new parameter allows the user to specify a target CQ level.
For normal (non kf/gf/arf) frames, the quantizer will not drop BELOW the
user specified value (0-63). However, in some cases the encoder may
choose to impose a target CQ that is above that specified by the user,
if it estimates that consistent use of the target value is not compatible
with guideline maximum bitrate.
Change-Id: I2221f9eecae8cc3c431d36caf83503941b25e4c1
In two pass encoding each frame is given an active
Q range to work with. This change limits how much this
Q range can be altered over time from the initial estimate
made for the clip as a whole.
There is some danger this could lead to overshoot or undershoot
in some corner cases but it helps considerably in regard to
clips where either there is a glut or famine of bits in some sections,
particularly near the end of a clip.
Change-Id: I34fcd1af31d2ee3d5444f93e334645254043026e
cpi->target_bits_per_mb is currently not being used,
so delete it. Also removed other unused code in rdopt.c.
Change-Id: I98449f9030bcd2f15451d9b7a3b9b93dd1409923
Calculate a minimum intra value to be used in determining the
IIratio scores used in two pass, second pass.
This is to make sure sections that are low complexity" in the
intra domain are still boosted appropriately for KF/GF/ARF.
For now I have commented out the Q based adjustment of
KF boost.
Change-Id: I15deb09c5bd9b53180a2ddd3e5f575b2aba244b3
Use the fast quantizer for inter mode selection and the
regular quantizer for the rest of the encode for good quality,
speed 1. Both performance and quality were improved. The
quality gains will make up for the quality loss mentioned in
I9dc089007ca08129fb6c11fe7692777ebb8647b0.
Change-Id: Ia90bc9cf326a7c65d60d31fa32f6465ab6984d21
allow for optimized versions of apply_temporal_filter
(now vp8_apply_temporal_filter_c)
the function was previously declared as static and appears to have been
inlined. with this change, that's no longer possible. performance takes
a small hit.
the declaration for vp8_cx_temp_filter_c was moved to onyx_if.c because
of a circular dependency. for rtcd, temporal_filter.h holds the
definition for the rtcd table, so it needs to be included by onyx_int.h.
however, onyx_int.h holds the definition for VP8_COMP which is needed
for the function prototype. blah.
Change-Id: I499c055fdc652ac4659c21c5a55fe10ceb7e95e3
This code is unused, as the current preproc implementation uses the
same spatial filter that postproc uses.
Change-Id: Ia06d5664917d67283f279e2480016bebed602ea7
Add vp8_mv_pred() to better predict starting MV for NEWMV
mode in vp8_rd_pick_inter_mode(). Set different search
ranges according to MV prediction accuracy, which improves
encoder performance without hurting the quality. Also,
as Yaowu suggested, using diamond search result as full
search starting point and therefore adjusting(reducing)
full search range helps the performance.
Change-Id: Ie4a3c8df87e697c1f4f6e2ddb693766bba1b77b6
VBR rate control can become very noisy for the last few frames.
If there are a few bits to spare or a small overshoot then the
target rate and hence quantizer may start to fluctuate wildly.
This patch prevents further adjustment of the active Q limits for
the last few frames.
Patch also removes some redundant variables and makes one small bug fix.
Change-Id: Ic167831bec79acc9f0d7e4698bcc4bb188840c45
Small changes to the default zero bin and rounding tables.
Though the tables are currently the same for the Y1 and Y2 cases
I have left them as separate tables in case we want to tune this later.
There is now some adjustment of the zbin based on the prediction mode.
Previously this was restricted to an adjustment for gf/arf 0,0 MV.
The exact quantizer now marginal outperforms and is the default.
The overall average gain is about 0.5%
Change-Id: I5e4353f3d5326dde4e86823684b236a1e9ea7f47
Change Ice204e86 identified a problem with bitrate undershoot due to
low precision in the timestamps passed to the library. This patch
takes a different approach by calculating the duration of this frame
and passing it to the library, rather than using a fixed duration
and letting the library average it out with higher precision
timestamps. This part of the fix only applies to vpxenc.
This patch also attempts to fix the problem for generic applications
that may have made the same mistake vpxenc did. Instead of
calculating this frame's duration by the difference of this frame's
and the last frame's start time, we use the end times instead. This
allows the framerate calculation to scavenge "unclaimed" time from
the last frame. For instance:
start | end | calculated duration
======+=======+====================
0ms 33ms 33ms
33ms 66ms 33ms
66ms 99ms 33ms
100ms 133ms 34ms
Change-Id: I92be4b3518e0bd530e97f90e69e75330a4c413fc
NEON has optimized 16x16 half-pixel variance functions, but they
were not part of the RTCD framework. Add these functions to RTCD,
so that other platforms can make use of this optimization in the
future and special-case ARM code can be removed.
A number of functions were taking two variance functions as
parameters. These functions were changed to take a single
parameter, a pointer to a struct containing all the variance
functions for that block size. This provides additional flexibility
for calling additional variance functions (the half-pixel special
case, for example) and by initializing the table for all block sizes,
we don't have to construct this function pointer table for each
macroblock.
Change-Id: I78289ff36b2715f9a7aa04d5f6fbe3d23acdc29c
Most of the code that actually uses these matrices indexes them as
if they were a single contiguous array, and coverity produces
reports about the resulting accesses that overflow the static
bounds of the first row.
This is perfectly legal in C, but converting them to actual [16]
arrays should eliminate the report, and removes a good deal of
extraneous indexing and address operators from the code.
Change-Id: Ibda479e2232b3e51f9edf3b355b8640520fdbf23
The first implementation of the firstpass motion map for motion
compensated temporal filtering created a file, fpmotionmap.stt,
in the current working directory. This was not safe for multiple
encoder instances. This patch merges this data into the first pass
stats packet interface, so that it is handled like the other
(numerical) firstpass stats.
The new stats packet is defined as follows:
Numerical Stats (16 doubles) -- 128 bytes
Motion Map -- 1 byte / Macroblock
Padding -- to align packet to 8 bytes
The fpmotionmap.stt file can still be generated for debugging
purposes in the same way that the textual version of the stats
are available (defining OUTPUT_FPF in firstpass.c)
Change-Id: I083ffbfd95e7d6a42bb4039ba0e81f678c8183ca
when a subsequent frame is encoded as an alt reference frame, it is
unlikely that any mb in current frame will be used as reference for
future frames, so we can enable quantization optimization even when
the RD constant is slightly rate-biased. The change has an overall
benefit between 0.1% to 0.2% bit savings on the test sets based on
vpxssim scores.
Change-Id: I9aa7bc5cd573ea84e3ee655d2834c18c4460ceea