Initial ssse3 convolve avg functions and is one step closer
to using x86inc.asm. The decoder performance improved by 8% for
the test clip used. This should be revisited later to see if
averaging outside the loop is better than having many similar
filter functions.
Change-Id: Ice3fafb423b02710b0448ffca18b296bcac649e9
Removal of the NEWCOEFCONTEXT experiment to
reduce code clutter and make it easier to experiment with
some other changes to the coefficient coding context.
Change-Id: Icd17b421384c354df6117cc714747647c5eb7e98
Make the progress line more useful by providing per-frame updates of
processing frame rate and estimated time remaining.
Fixes issue #534.
Change-Id: Ic91551878ff4b2f5db1cedaafb588add220cfa52
A couple of scalar optimizations speeding up quantization by about 1.6x. Overall encoder speedup is around 3%.
Change-Id: I19981d1ef0b33e4e5732739574f367fe82771a84
This is after discussion with the hardware team. Update the unit test
to take these sizes into account. Split out some duplicate code into
a separate file so it can be shared.
Change-Id: I8311d11b0191d8bb37e8eb4ac962beb217e1bff5
Implement convolve8_avg using common functions which are already optimized
instead of using more obscure ones which have only C versions. Encoder
overall speed-up of about 12%.
Change-Id: I8c57aa76936c8a48f22b115f19f61d9f2ae1e4b6
fixed format issues.
Implement the inverse 4x4 ADST using 9 multiplications. For this
particular dimension, the original ADST transform can be
factorized into simpler operations, hence is retained.
Change-Id: Ie5d9749942468df299ab74e90d92cd899569e960
Experimental tweaks to various thresholds to measure
quality / speed trade off.
Add flag that allows static segmentation to be turned off
and disables it unless in the second pass of a two pass
encode.
Change-Id: I219702ffe858412a83db801cbbbd869924b8c61b
A 16 bit overflow condition occurs when using the EIGHTTAP_SMOOTH filters.
(vp9_sub_pel_filters_8lp) Changed the order of the adds to fix this problem.
Also added ssse3 support for 4x4 subpixel filtering.
Change-Id: I475eaadae920794c2de5e01e9735c059a856518e
Replace as_mv.{first, second} with a two element array, so that they
can easily be processed with an index variable.
Change-Id: I1e429155544d2a94a5b72a5b467c53d8b8728190
Also port the 4x4, 16x16, 8x16 and 16x8 versions to x86inc.asm; this
makes them all slightly faster, particularly on x86-64. Remove SSE3
sad16x16 version, since the SSE2 version is now faster.
About 1.5% overall encoding speedup.
Change-Id: Id4011a78cce7839f554b301d0800d5ca021af797
Cache the constant offset in one variable to prevent re-loading that
in each loop iteration, and mark the function as inline so we can use
the fact that the transform size is always known in the caller.
Almost 1% faster encoding overall.
Change-Id: Id78325a60b025057d8f4ecd9003a74086ccbf85a
Pass the current mb row and column around rather than the
recon_yoffset and recon_uvoffset, since those offsets will
change from predictor to predictor, based on the reference
frame selection.
Change-Id: If3f9df059e00f5048ca729d3d083ff428e1859c1
* changes:
Initial support for resolution changes on P-frames
Avoid allocating memory when resizing frames
Adds a test for the VP8E_SET_SCALEMODE control
Allows inter-frames to change resolution. Currently these are
almost equivalent to keyframes, as only intra prediction modes
are allowed, but without the other context resets that occur on
keyframes.
Change-Id: Icd1a2a5af0d9462cc792588427b0a1f5b12e40d3
As long as the new frame is smaller than the size that was originally
allocated, we don't need to free and reallocate the memory allocated.
Instead, do the allocation on the size of the first frame. We could
make this passed in from the application instead, if we wanted to
support external upscaling.
Change-Id: I204d17a130728bbd91155bb4bd863a99bb99b038
Tests that the external interface to set the internal codec scaling
works as expected. Also updates the test to pull the height from
the decoded frame size rather than parsing the keyframe header,
in anticipation of allowing resolution changes on non-keyframes.
Change-Id: I3ed92117d8e5288fbbd1e7b618f2f233d0fe2c17
This commit adds the 8 tap SSSE3 subpixel filters back into the code
underneath the convolve API. The C code is still called for 4x4
blocks, as well as compound prediction modes. This restores the
encode performance to be within about 8% of the baseline.
Change-Id: Ife0d81477075ae33c05b53c65003951efdc8b09c
Tweak to default mode context to account for the fact
that when there are no non zero motion candidates
Nearest is now the preferred mode for coding a 0,0
vector.
Also resolve duplicate function name and typos.
Change-Id: I76802788d46c84e3d1c771be216a537ab7b12817
Refactor the 8x8 inverse hybrid transform. It is now consistent
with the new inverse DCT. Overall performance loss (due to the
use of this variant ADST, and the rounding errors in the butterfly
implementation) for std-hd is -0.02.
Fixed BUILD warning.
Devise a variant of the original ADST, which allows butterfly
computation structure. This new transform has kernel of the
form: sin((2k+1)*(2n+1) / (4N)). One of its butterfly structures
using floating-point multiplications was reported in Z. Wang,
"Fast algorithms for the discrete W transform and for the discrete
Fourier transform", IEEE Trans. on ASSP, 1984.
This patch includes the butterfly implementation of the inverse
ADST/DCT hybrid transform of dimension 8x8.
Change-Id: I3533cb715f749343a80b9087ce34b3e776d1581d
Added switches and code to skip/breakout from
doing SB32 and SB64 tests based on whether
the 16x16 MB tests used split modes. Also to
optionally skip 64x64 if 16x16 was chosen over
32x32.
Impact varies depending on clip from a few %
up to almost 50% on encode speed. Only the
split mode breakout is currently enabled.
Change-Id: Ib5836140b064b350ffa3057778ed2cadcc495cf8
This patch adds column-based tiling. The idea is to make each tile
independently decodable (after reading the common frame header) and
also independendly encodable (minus within-frame cost adjustments in
the RD loop) to speed-up hardware & software en/decoders if they used
multi-threading. Column-based tiling has the added advantage (over
other tiling methods) that it minimizes realtime use-case latency,
since all threads can start encoding data as soon as the first SB-row
worth of data is available to the encoder.
There is some test code that does random tile ordering in the decoder,
to confirm that each tile is indeed independently decodable from other
tiles in the same frame. At tile edges, all contexts assume default
values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode),
and motion vector search and ordering do not cross tiles in the same
frame.
t log
Tile independence is not maintained between frames ATM, i.e. tile 0 of
frame 1 is free to use motion vectors that point into any tile of frame
0. We support 1 (i.e. no tiling), 2 or 4 column-tiles.
The loopfilter crosses tile boundaries. I discussed this briefly with Aki
and he says that's OK. An in-loop loopfilter would need to do some sync
between tile threads, but that shouldn't be a big issue.
Resuls: with tiling disabled, we go up slightly because of improved edge
use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf,
~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5%
on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is
concentrated in the low-bitrate end of clips, and most of it is because
of the loss of edges at tile boundaries and the resulting loss of intra
predictors.
TODO:
- more tiles (perhaps allow row-based tiling also, and max. 8 tiles)?
- maybe optionally (for EC purposes), motion vectors themselves
should not cross tile edges, or we should emulate such borders as
if they were off-frame, to limit error propagation to within one
tile only. This doesn't have to be the default behaviour but could
be an optional bitstream flag.
Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f