The data processed by the loopfilter overlaps. At the block level, this
results in some redundant transforms. Grouping the filtering allows for
a single 16x16 transpose (and inversion) instead of three 16x8 transposes
(and three more inversions).
This implementation is x86_64 only. We retain the previous
implementation for x86.
Improvements are obviously material dependant, but it seems to be ~%1 in
tests here.
Change-Id: I467b7ec3655be98fb5f1a94b5d145e5e5a660007
Make sure that this header is listed as one of the sources, so that it
will be installed if necessary.
Change-Id: I2427e494488126b179151dc21043c1e2c8ba5991
Adding support in the encoder for generating
independent residual partitions by forcing
equal probabilities over the prev coef entropy
contexts.
Change-Id: I402f5c353255f3ca20eae2620af739f6a498cd21
A large number of functions were defined with external linkage, even
though they were only used from within one file. This patch changes
their linkage to static and removes the vp8_ prefix from their names,
which should make it more obvious to the reader that the function is
contained within the current translation unit. Functions that were
not referenced were removed.
These symbols were identified by:
$ nm -A libvpx.a | sort -k3 | uniq -c -f2 | grep ' [A-Z] ' \
| sort | grep '^ *1 '
Change-Id: I59609f58ab65312012c047036ae1e0634f795779
make reference version of bilinear_filters short.
use reference versions of bilinear_filters and sub_pel_filters when
possible.
recognize that Width was being passed into
filter_block2d_bil_first_pass multiple times. ARM version had already
fixed this. propegate to C.
change references to src_pixels_per_line to src_pitch and standardize on
src/dst (instead of input/output).
recognize that first_pass is only run in the verticle and second_pass
only horizontal. ARM version had already fixed this. propegate to C
Change-Id: I292d376d239a9a7ca37ec2bf03cc0720606983e2
it's difficult to mux the *_offsets.c files because of header conflicts.
make three instead, name them consistently and partititon the contents
to allow building them as required.
Change-Id: I8f9768c09279f934f44b6c5b0ec363f7943bb796
common/arm/vpx_asm_offsets moves up a level. prepare for muxing with
encoder/arm/vpx_vp8_enc_asm_offsets
Change-Id: I89a04a5235447e66571995c9d9b4b6edcb038e24
This code is unused, as the current preproc implementation uses the
same spatial filter that postproc uses.
Change-Id: Ia06d5664917d67283f279e2480016bebed602ea7
ARM NEON has a platform specific version of vp8_recon16x16mb, though
it's just a stub to extract the various parameters from the
MACROBLOCKD struct and pass them to vp8_recon16x16mb_neon(). Using
that function's prototype directly will be a better long term solution,
but it's quite an invasive change.
Change-Id: I04273149e2ade34749e2d09e7edb0c396e1dd620
Some of the ARM functions differed from their generic counterparts
only by unrolling their loops. Since this change may be useful
on other platforms, or might even supercede the looped version
in the generic case, move it back to the generic file.
This code is left under #if ARCH_ARM for now, but it may be worth
considering a different (possibly new) conditional for these. If
it turns out that this should be runtime selectable, these
functions will have to move to the RTCD infrastructure. Don't want
to take that step at this time without more profile data.
Change-Id: I4612fdbc606fbebba4971a690fb743ad184ff15f
there were four versions for the regular and
macroblock loopfilters:
horizontal [y|uv]
vertical [y|uv]
this moves all the common code into 2 functions:
vp8_loop_filter_neon
vp8_mbloop_filter_neon
this provides no gain in performance. there's a bit
of jitter, but it trends down ~0.25-0.5%. however,
this is a huge gain maintenance. also, there is the
potential to drop some stack usage in the macroblock
loopfilter.
Change-Id: I91506f07d2f449631ff67ad6f1b3f3be63b81a92
The primary goal is to allow a binary to be built which supports
NEON, but can fall back to non-NEON routines, since some Android
devices do not have NEON, even if they are otherwise ARMv7 (e.g.,
Tegra).
The configure-generated flags HAVE_ARMV7, etc., are used to decide
which versions of each function to build, and when
CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen
at run time.
In order for this to work, the CFLAGS must be set to something
appropriate (e.g., without -mfpu=neon for ARMv7, and with
appropriate -march and -mcpu for even earlier configurations), or
the native C code will not be able to run.
The ASFLAGS must remain set for the most advanced instruction set
required at build time, since the ARM assembler will refuse to emit
them otherwise.
I have not attempted to make any changes to configure to do this
automatically.
Doing so will probably require the addition of new configure options.
Many of the hooks for RTCD on ARM were already there, but a lot of
the code had bit-rotted, and a good deal of the ARM-specific code
is not integrated into the RTCD structs at all.
I did not try to resolve the latter, merely to add the minimal amount
of protection around them to allow RTCD to work.
Those functions that were called based on an ifdef at the calling
site were expanded to check the RTCD flags at that site, but they
should be added to an RTCD struct somewhere in the future.
The functions invoked with global function pointers still are, but
these should be moved into an RTCD struct for thread safety (I
believe every platform currently supported has atomic pointer
stores, but this is not guaranteed).
The encoder's boolhuff functions did not even have _c and armv7
suffixes, and the correct version was resolved at link time.
The token packing functions did have appropriate suffixes, but the
version was selected with a define, with no associated RTCD struct.
However, for both of these, the only armv7 instruction they actually
used was rbit, and this was completely superfluous, so I reworked
them to avoid it.
The only non-ARMv4 instruction remaining in them is clz, which is
ARMv5 (not even ARMv5TE is required).
Considering that there are no ARM-specific configs which are not at
least ARMv5TE, I did not try to detect these at runtime, and simply
enable them for ARMv5 and above.
Finally, the NEON register saving code was completely non-reentrant,
since it saved the registers to a global, static variable.
I moved the storage for this onto the stack.
A single binary built with this code was tested on an ARM11 (ARMv6)
and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder,
and produced identical output, while using the correct accelerated
functions on each.
I did not test on any earlier processors.
Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
reconintra_mt.c is only required for building the decoder right now.
It could definitely be used for the encoder in the future, but it
currently depends on decoder only data structures. (onyxd_int.h,
VP8D_COMP, etc). Move it from common/ to decoder/ until the
necessary changes to the common multithread code are complete.
This patch is needed to build with --disable-vp8-decoder.
Change-Id: I568c52221a2b309234d269675cba97131ce35c86
On each MB, loopfiltering is done right after MB decoding. This
combines two loops in multi-threaded code into one, which reduces
number of synchronizations to half.
The above-row/left-col data are saved in temp buffers for
next-row/next MB decoding.
Tests on 4-core gLucid machine showed 10% decoder performance
gain with threads=4 (tulip clip). Testing on other platforms
isn't done yet.
Change-Id: Id18ea7c1e84965dabea65d4c01ca5bc056ddeac9
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
Remove the dependency on postproc.c for the encoder in general, the only
unchecked need for it is when CONFIG_PSNR is enabled. All other cases
are already wrapped in CONFIG_POSTPROC. In the CONFIG_PSNR case the file
will still be included.
Additionally, when VP8_SET_POSTPROC is used with the encoder when post
processing has been disabled an error will be returned.
This addresses issue #153.
Change-Id: Ia6dfe20167f7077734a6058cbd1d794550346089
Moving the eob structure allows for a non-struct based
function to handle decoding an entire mb of
idct/dequant/recon data. This allows for SIMD functions
to idct/dequant/recon multiple blocks at once.
SSE2 implementation gives 3% gain on Atom.
Change-Id: I8a8f3efd546ea4e0535f517d94f347cfb737c9c2
vp8_update_gf_useage_maps() is only used by the encoder. This patch
fixes the ability to build in decode-only or encode-only
configurations.
Change-Id: I3a5211428e539886ba998e09e8abd747ac55c9aa
Jeff Muizelaar posted some changes to the idct/reconstruction c code.
This is the equivalent update for the arm assembly.
This shows a good boost on v6, and a minor boost on neon.
Here are some numbers for highway in qcif, 2641 frames:
HEAD neon: ~161 fps
new neon: ~162 fps
HEAD v6: ~102 fps
new v6: ~106 fps
The following functions have been updated for armv6 and neon:
vp8_dc_only_idct_add
vp8_dequant_idct_add
vp8_dequant_dc_idct_add
Conflicts:
vp8/decoder/arm/armv6/dequantdcidct_v6.asm
vp8/decoder/arm/armv6/dequantidct_v6.asm
Resolved by removing these files. When I rewrote the functions, I also
moved the files to dequant_dc_idct_v6.asm/dequant_idct_v6.asm
Change-Id: Ie3300df824d52474eca1a5134cf22d8b7809a5d4
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d