Moving the eob structure allows for a non-struct based
function to handle decoding an entire mb of
idct/dequant/recon data. This allows for SIMD functions
to idct/dequant/recon multiple blocks at once.
SSE2 implementation gives 3% gain on Atom.
Change-Id: I8a8f3efd546ea4e0535f517d94f347cfb737c9c2
Jeff Muizelaar posted some changes to the idct/reconstruction c code.
This is the equivalent update for the arm assembly.
This shows a good boost on v6, and a minor boost on neon.
Here are some numbers for highway in qcif, 2641 frames:
HEAD neon: ~161 fps
new neon: ~162 fps
HEAD v6: ~102 fps
new v6: ~106 fps
The following functions have been updated for armv6 and neon:
vp8_dc_only_idct_add
vp8_dequant_idct_add
vp8_dequant_dc_idct_add
Conflicts:
vp8/decoder/arm/armv6/dequantdcidct_v6.asm
vp8/decoder/arm/armv6/dequantidct_v6.asm
Resolved by removing these files. When I rewrote the functions, I also
moved the files to dequant_dc_idct_v6.asm/dequant_idct_v6.asm
Change-Id: Ie3300df824d52474eca1a5134cf22d8b7809a5d4
This moves the prediction step before the idct and combines the idct and
reconstruction steps into a single step. Combining them seems to give an
overall decoder performance improvement of about 1%.
Change-Id: I90d8b167ec70d79c7ba2ee484106a78b3d16e318
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d
Change bitreading functions to use a larger window which is refilled less
often.
This makes it cheap enough to do bounds checking each time the window is
refilled, which avoids the need to copy the input into a large circular
buffer.
This uses less memory and speeds up the total decode time by 1.6% on an ARM11,
2.8% on a Cortex A8, and 2.2% on x86-32, but less than 1% on x86-64.
Inlining vp8dx_bool_decoder_fill() has a big penalty on x86-32, as does moving
the refill loop to the front of vp8dx_decode_bool().
However, having the refill loop between computation of the split values and
the branch in vp8_decode_mb_tokens() is a big win on ARM (presumably due to
memory latency and code size: refilling after normalization duplicates the
code in the DECODE_AND_BRANCH_IF_ZERO and DECODE_AND_LOOP_IF_ZERO cases.
Unfortunately, refilling at the end of vp8dx_bool_decoder_fill() and at the
beginning of each decode step in vp8_decode_mb_tokens() means the latter
requires an extra refill at the end.
Platform-specific versions could avoid the problem, but would require most of
detokenize.c to be duplicated.
Change-Id: I16c782a63376f2a15b78f8086d899b987204c1c7