The previous implementation visited each node in the tree multiple times
because it used each symbol's encoding to revisit the branches taken and
increment its count. Instead, we can traverse the tree depth first and
calculate the probabilities and branch counts as we walk back up. The
complexity goes from somewhere between O(nlogn) and O(n^2) (depending on
how balanced the tree is) to O(n).
Only tested one clip (256kbps, CIF), saw 13% decoding perf improvement.
Note that this optimization should port trivially to VP8 as well. In VP8,
the decoder doesn't use this function, but it does routinely show up
on the profile for realtime encoding.
Change-Id: I4f2848e4f41dc9a7694f73f3e75034bce08d1b12
Add a function clip_pixel() to clip a pixel value to the [0,255] range
of allowed values, and use this where-ever appropriate (e.g. prediction,
reconstruction). Likewise, consistently use the recently added function
clip_prob(), which calculates a binary probability in the [1,255] range.
If possible, try to use get_prob() or its sister get_binary_prob() to
calculate binary probabilities, for consistency.
Since in some places, this means that binary probability calculations
are changed (we use {255,256}*count0/(total) in a range of places,
and all of these are now changed to use 256*count0+(total>>1)/total),
this changes the encoding result, so this patch warrants some extensive
testing.
Change-Id: Ibeeff8d886496839b8e0c0ace9ccc552351f7628
Support for gyp which doesn't support multiple objects in the same
static library having the same basename.
Change-Id: Ib947eefbaf68f8b177a796d23f875ccdfa6bc9dc