move some things around, reorder some instructions
constant 0 is used several times. load it once per call in horiz,
once per loop in vert.
separate saturating instructions to avoid stalls.
just use one usub8 call to set GE flags, rather than uqsub8 followed by
usub8 w/ 0
document some stalls for further consideration
Change-Id: Ic3877e0ddbe314bb8a17fd5db73501a7d64570ec
test cases were causing a crash because the count was being read
incorrectly. after fixing that, noticed that the output was not
matching. fixed that.
Change-Id: Idb0edb887736bd566a3cf6d4aa1a03ea8d20eb27
The C version of the dequant/idct/add function depends on the C
version of the IDCT, but this isn't compiled in on ARM. Since this
code has asm version, we can just remove this file to eliminate the
link error.
Change-Id: I21de74d89d3765a1db2da27292b20727c53178e9
vp8_update_gf_useage_maps() is only used by the encoder. This patch
fixes the ability to build in decode-only or encode-only
configurations.
Change-Id: I3a5211428e539886ba998e09e8abd747ac55c9aa
adds a compile time option: --enable-arm-asm-detok which pulls in
vp8/decoder/arm/detokenize.asm
currently about break even speed wise, but changes are pending to
the fill code (branch and load 3 bytes versus conditionally always
load one) and the error handling. Currently it doesn't handle zero
runs or overrunning the buffer.
this is really just so i don't have to rebase my changes all the
time to run benchmarks - now just need to replace one file!
Change-Id: I56d0e2354dc0ca3811bffd0e88fe1f952fa6c797
asm_offsets contains some definitions which are no longer used. this
was one of them. v6 build works now
Change-Id: If370cfa8acd145de4fead2d9a11b048fccc090df
These copies occurred for each macroblock in the encoder and decoder.
Thetemp MB_MODE_INFO mbmi was removed from MACROBLOCKD. As a result,
a large number compile errors had to be fixed.
Change-Id: I4cf0ffae3ce244f6db04a4c217d52dd256382cf3
The mv_ref and sub_mv_ref token encodings are indexed from NEARESTMV
and LEFT4X4, respectively, rather than being zero-based like the
other token encodings.
Change-Id: I3699c3f84111209ecfb91097c4b900773e9a3ad5
This patch changes a few numbers in the two constant arrays
for quantizer's zerobin and rounding factors, in general to
make the sum of the two factors for any Q to be 128. While
it might be beneficial to calibrate the two arrays for best
quantizer performance, it is not the purpose of this patch.
Normalizing the two arrays will enable quick optimization
of the current faster quantizer, i.e .zerobin check can be
removed.
Change-Id: If9abfd7929bf4b8e9ecd64a79d817c6728c820bd
Replace the exponential search for optimal rounding during
quantization with a linear Viterbi trellis and enable it
by default when using --best.
Right now this operates on top of the output of the adaptive
zero-bin quantizer in vp8_regular_quantize_b() and gives a small
gain.
It can be tested as a replacement for that quantizer by
enabling the call to vp8_strict_quantize_b(), which uses
normal rounding and no zero bin offset.
Ultimately, the quantizer will have to become a function of lambda
in order to take advantage of activity masking, since there is
limited ability to change the quantization factor itself.
However, currently vp8_strict_quantize_b() plus the trellis
quantizer (which is lambda-dependent) loses to
vp8_regular_quantize_b() alone (which is not) on my test clip.
Patch Set 3:
Fix an issue related to the cost evaluation of successor
states when a coefficient is reduced to zero. With this
issue fixed, now the trellis search almost exactly matches
the exponential search.
Patch Set 2:
Overall, the goal of this patch set is to make "trellis"
search to produce encodings that match the exponential
search version. There are three main differences between
Patch Set 2 and 1:
a. Patch set 1 did not properly account for the scale of
2nd order error, so patch set 2 disable it all together
for 2nd blocks.
b. Patch set 1 was not consistent on when to enable the
the quantization optimization. Patch set 2 restore the
condition to be consistent.
c. Patch set 1 checks quantized level L-1, and L for any
input coefficient was quantized to L. Patch set 2 limits
the candidate coefficient to those that were rounded up
to L. It is worth noting here that a strategy to check
L and L+1 for coefficients that were truncated down to L
might work.
(a and b get trellis quant to basically match the exponential
search on all mid/low rate encodings on cif set, without
a, b, trellis quant can hurt the psnr by 0.2 to .3db at
200kbps for some cif clips)
(c gets trellis quant to match the exponential search
to match at Q0 encoding, without c, trellis quant can be
1.5 to 2db lower for encodings with fixed Q at 0 on most
derf cif clips)
Change-Id: Ib1a043b665d75fbf00cb0257b7c18e90eebab95e
This is the first modification of VP8 multi-thread decoder, which uses
same threads to decode macroblocks and then do loopfiltering for each
frame.
Inspired by Rob Clark, synchronization was done on every 8 macroblocks
instead of every macroblock to reduce lock contention.
Comparing with the original code, this implementation gave about 15%-
20% performance gain while decoding my test clips on a Core2 Quad
platform (Linux).
The work is not done yet.
Test on other platforms are needed.
Change-Id: Ice9ddb0b511af1359b9f71e65066143c04fef3b5
Clang defaults to C99 mode, and inline works differently in C99.
(gcc, on the other hand, defaults to a special gnu-style inlining,
which uses different syntax.) Making the functions static makes sure
clang doesn't decide to discard a function because it's too large to
inline.
Thanks to eli.friedman for the patch.
Fixes http://code.google.com/p/webm/issues/detail?id=114
Change-Id: If3c1c3c176eb855a584a60007237283b0cc631a4
global label:data
^^
Provide nasm compatibility. No binary change by this patch with yasm
on {x86_64,i686}-fedora13-linux-gnu. Few longer opcodes with nasm on
{x86_64,i686}-fedora13-linux-gnu have been checked as safe.
Change-Id: I10f17eb1e4d4a718d4ebd1d0ccddc807c365e021
Labels should end by colon (':'), nasm requires it.
Provide nasm compatibility. No binary change by this patch with yasm
on {x86_64,i686}-fedora13-linux-gnu. Few longer opcodes with nasm on
{x86_64,i686}-fedora13-linux-gnu have been checked as safe.
Change-Id: I0b2ec6f01afb061d92841887affb5ca0084f936f
nasm knows only OWORD. yasm knows both OWORD and DQWORD.
Provide nasm compatibility. No binary change by this patch with yasm on
{x86_64,i686}-fedora13-linux-gnu. Few longer opcodes with nasm on
{x86_64,i686}-fedora13-linux-gnu have been checked as safe.
Change-Id: I62151390089e90df9a7667822fa594ac20b00e78
Removed the global variables vp8_an and vp8_cd. vp8_an was causing problems
because it was increasing the .bss by 1572864 bytes.
Change-Id: I6c12e294133c7fb6e770c0e4536d8287a5720a87
To facilitate more testing related to quantizer and rate
control, the old version quantizer is added back. old and
new quantizer can be switched back and forth by define or
un-define the macro "EXACT_QUANT".
Change-Id: Ia77e687622421550f10e9d65a9884128a79a65ff
follow up to Change I0e51492d: neon: disable asm quantizer
Now x86 doesn't segfault with --disable-runtime-cpu-detect and -p=2
Change-Id: I8ca127bb299198efebbcbd5a661e81788361933f
The assembly version of the quantizer has not been updated to match
the new exact quantizer introduced in commit e04e2935. That commit tried
to disable this code but missed the non-RTCD case.
Thanks to David Baker <david.baker at openmarket.com> for isolating the
issue and testing this fix.
Change-Id: I0e51492dc6f8e44d2c10b587427448bf94135c65
Jeff Muizelaar posted some changes to the idct/reconstruction c code.
This is the equivalent update for the arm assembly.
This shows a good boost on v6, and a minor boost on neon.
Here are some numbers for highway in qcif, 2641 frames:
HEAD neon: ~161 fps
new neon: ~162 fps
HEAD v6: ~102 fps
new v6: ~106 fps
The following functions have been updated for armv6 and neon:
vp8_dc_only_idct_add
vp8_dequant_idct_add
vp8_dequant_dc_idct_add
Conflicts:
vp8/decoder/arm/armv6/dequantdcidct_v6.asm
vp8/decoder/arm/armv6/dequantidct_v6.asm
Resolved by removing these files. When I rewrote the functions, I also
moved the files to dequant_dc_idct_v6.asm/dequant_idct_v6.asm
Change-Id: Ie3300df824d52474eca1a5134cf22d8b7809a5d4
This moves the prediction step before the idct and combines the idct and
reconstruction steps into a single step. Combining them seems to give an
overall decoder performance improvement of about 1%.
Change-Id: I90d8b167ec70d79c7ba2ee484106a78b3d16e318
At the end of the decode, frame buffers were being copied.
The frames are not updated after the copy, they are just
for reference on later frames. This change allows multiple
references to the same frame buffer instead of copying it.
Changes needed to be made to the encoder to handle this. The
encoder is still doing frame buffer copies in similar places
where pointer reference could be done.
Change-Id: I7c38be4d23979cc49b5f17241ca3a78703803e66