EC expects the subblock MVs to be populated, but
f1d6cc79e43f0066632f19c1854ca365086b712b removed this code. This
commit restores it, protected by CONFIG_ERROR_CONCEALMENT. May move this
to the EC code more directly in the future.
Change-Id: I44f8f985720cb9a1bf222e59143f9e69abf56ad2
When error concealment is enabled the first key frame must
be successfully received before error concealment is activated.
Error concealment will be activated when the delta following
delta frame is received.
Also fixed a couple of bugs related to error tracking in
multi-threading. And avoiding decoding corrupt residual
when we have multiple non-resilient partitions.
Change-Id: I45c4bb296e2f05f57624aef500a874faf431a60d
This patch fixes an OOB read when error concealment is enabled and the
partition sizes are corrupt. The partition size read from the bitstream
was not being validated in EC mode.
Change-Id: Ia81dfd4bce1ab29ee78e42320abe52cee8318974
EC expects the subblock MVs to be populated, but
f1d6cc79e43f0066632f19c1854ca365086b712b removed this code. This
commit restores it, protected by CONFIG_ERROR_CONCEALMENT. May move this
to the EC code more directly in the future.
Change-Id: I44f8f985720cb9a1bf222e59143f9e69abf56ad2
When error concealment is enabled the first key frame must
be successfully received before error concealment is activated.
Error concealment will be activated when the delta following
delta frame is received.
Also fixed a couple of bugs related to error tracking in
multi-threading. And avoiding decoding corrupt residual
when we have multiple non-resilient partitions.
Change-Id: I45c4bb296e2f05f57624aef500a874faf431a60d
This patch fixes an OOB read when error concealment is enabled and the
partition sizes are corrupt. The partition size read from the bitstream
was not being validated in EC mode.
Change-Id: Ia81dfd4bce1ab29ee78e42320abe52cee8318974
sharpness was not recalculated in vp8cx_pick_filter_level_fast
remove last_filter_type. all values are calculated, don't need to update
the lfi data when it changes.
always use cm->sharpness_level. the extra indirection was annoying.
don't track last frame_type or sharpness_level manually. frame type
only matters for motion search and sharpness_level is taken care of in
frame_init
move function declarations to their proper header
Change-Id: I7ef037bd4bf8cf5e37d2d36bd03b5e22a2ad91db
With this fix, the experimental branch now builds and encodes correctly
with the following two configure options respectively:
--enable-experimental --enable-t8x8
--enable-experimental
Change-Id: I3147c33c503fe713a85fd371e4f1a974805778bf
The auto merge process pull and merge commits from public git or master
branch. These automerges while worked well most time, but has created
a few problems. This commit fixed several issues existed long before
the latest 8x8 transform commit.
Change-Id: I895ca99713231b1aec521d57db5d9839f74aacfa
allowing the compiler to inline this function. For real-time
encodes, this gave a boost of 1% to 2.5%, depending on the
speed setting.
Change-Id: I3929d176cca086b4261267b848419d5bcff21c02
Separate simple filter with reduced no. of parameters.
MB filter level picking based on precalculated table. Level table updated for
each frame. Inside and edge limits precalculated and updated just when
sharpness changes. HEV threshhold is constant.
ARM targets use scalars and others vectors.
Change works only with --target=generic-gnu
All other targets have to be updated!
Change-Id: I6b73aca6b525075b20129a371699b2561bd4d51c
There were many instances in the code of vp8_coef_tokens and
vp8_coef_tokens-1, which was a preprocessor macro despite the naming
convention. Replace these with MAX_ENTROPY_TOKENS and ENTROPY_NODES,
respectively.
Change-Id: I72c4f6c7634c94e1fa066cd511471e5592c748da
With this commit frames can be received partition-by-partition
from the encoder and passed partition-by-partition to the
decoder.
At the encoder-side this makes it easier to split encoded
frames at partition boundaries, useful when packetizing
frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled,
several VPX_CODEC_CX_FRAME_PKT packets will be returned
from vpx_codec_get_cx_data(), containing one partition
each. The partition_id (starting at 0) specifies the decoding
order of the partitions. All partitions but the last has
the VPX_FRAME_IS_FRAGMENT flag set.
At the decoder this opens up the possibility of decoding partition
N even though partition N-1 was lost (given that independent
partitioning has been enabled in the encoder) if more info
about the missing parts of the stream is available through
external signaling.
Each partition is passed to the decoder through the
vpx_codec_decode() function, with the data pointer pointing
to the start of the partition, and with data_sz equal to the
size of the partition. Missing partitions can be signaled to
the decoder by setting data != NULL and data_sz = 0. When
all partitions have been given to the decoder "end of data"
should be signaled by calling vpx_codec_decode() with
data = NULL and data_sz = 0.
The first partition is the first partition according to the
VP8 bitstream + the uncompressed data chunk + DCT address
offsets if multiple residual partitions are used.
Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
The current code stores pointers to coefficient tables and loads them to
access the tables contents. As these pointers are stored in the code
sections, it means we end up with text relocations. eu-findtextrel will
thus complain about code not compiled with -fpic/-fPIC.
Since the pointers are stored in the code sections, we can actually cheat
and let the assembler generate relative addressing when accessing the
coefficient tables, and just load their location with adr.
Change-Id: Ib74ae2d3f2bab80b29991355f2dbe6955f38f6ae