This commit changes to allow the usage of golden reference frame in
VP9 CBR mode to improve quality. VP9 supports potentially up to 8
reference buffers, it has reference buffers available for this
purpose. This was not possible in VP8 as golden and alt-ref buffers
were used for temporal scalability purpose in CBR mode in WebRTC.
For frames that update golden frame, there can be a quality boost.
The amount of allowed bitrate boost can be controlled via parameter
rc_max_inter_bitrate_pct. The inital value of the boost ratior is
currently based on over_shoot_pct. Further experiments will work
out the adaption of this boost value.
Change-Id: I0c5f010c8fd8b7b598f69779c1b30e5b2ac30a4d
Add second level arf Q adjustment when using dual arfs
in constant Q mode.
Previously in constant Q mode enabling dual arf hurt by ~5%
but with this change the average benefit is ~1-1.5% with some
mid range data points up ~10%.
Note however that it still hurts on some clips including
some very low motion show content.
Change-Id: I5b7789a2f42a6127d9e801cc010c20a7113bdd9b
This removes an unnecessary restriction that causes
a problem (noticed by AWG) when the forced key frame
interval is set to a very small value, such as 10. In this case
we were being forced to code minimal length GF groups.
Change-Id: I76ef5861a09638ff51f61fea02359554184ada53
Allow min and maxQ to creep when the undershoot
or overshoot exceeds thresholds controlled by the
command line under_shoot_pct and over_shoot_pct
values.
Default is 100%,100% which ~disables adaptation.
Derf results for example undershoot% / overshoot%:-
Head:- Mean abs (%rate error) = 14.4%
This check in:-
25%/25% - Mean abs (%rate error) = 6.7%
PSNR hit -1% SSIM -0.1%
5% / 5% - Mean abs (%rate error) = 2.2%
PSNR hit -3.3% SSIM - 1.1%
Most of the remaining error and most of the quality hit is
at extreme data rates. The adaptation code still has an
exception for material that is in effect static so that we
don't over adjust and over spend on YT slide show type
content.
(Rebase of If25a2449a415449c150acff23df713e9598d64c9
to resolve a auto-merge error)
Change-Id: Iec4e1613ef0d067454751d8220edb7058dfbd816
Allow min and maxQ to creep when the undershoot
or overshoot exceeds thresholds controlled by the
command line under_shoot_pct and over_shoot_pct
values.
Default is 100%,100% which ~disables adaptation.
Derf results for example undershoot% / overshoot%:-
Head:- Mean abs (%rate error) = 14.4%
This check in:-
25%/25% - Mean abs (%rate error) = 6.7%
PSNR hit -1% SSIM -0.1%
5% / 5% - Mean abs (%rate error) = 2.2%
PSNR hit -3.3% SSIM - 1.1%
Most of the remaining error and most of the quality hit is
at extreme data rates. The adaptation code still has an
exception for material that is in effect static so that we
don't over adjust and over spend on YT slide show type
content.
Change-Id: If25a2449a415449c150acff23df713e9598d64c9
Adjustments to the GF interval choice and minimum boost.
Adjustment to the calculation of 2 pass worst q.
Compared to 09/29 head there is metrics hit on derf of
(-0.123%,-0.191%)
Compared to the September 29 head and a baseline on
September 18 baseline the accuracy of the VBR rate control
measured on the derf set is as follows:-
Mean error % / Mean abs(error %)
Sept 18 baseline (-7.0% / 14.76%)
Sept 29 head (-15.7%, 19.8%)
This check in (-1.5% / 14.4%)
The mean undershoot is reduced slightly but the
worst case overshoot on e.g. harbour/highway is
increased. This will be addressed in a later patch.
Change-Id: Iffd9b0ab7432a131c98fbaaa82d1e5b40be72b58
Substantial restructuring of the way we estimate
the rate of decay in prediction quality and determine
the arf interval and amount of boost used.
Also other changes to support moving to a lower first pass
Q which exposes some new features and allows us to better
distinguish genuinely static blocks from low motion or noisy
blocks.
Net gains now visible on all the test sets with std-hd PSNR up
1.87%. There are still some bad outlier cases but most of these
are low motion or slide show type content where the metrics
are already high at any given rate. The best + case is up by
more than 10%.
Change-Id: I18e25170053bdf3188f493ff8062f48a74515815
It's built based on current spatial svc code.
We only support one spatial two temporal layers at this time.
Change-Id: I1fdc8584354b910331e626bfae60473b3b701ba1
We had a very complicated way to initialize cpi->pass from
cfg->g_pass:
switch (cfg->g_pass) {
case VPX_RC_ONE_PASS:
oxcf->mode = ONE_PASS_GOOD;
break;
case VPX_RC_FIRST_PASS:
oxcf->mode = TWO_PASS_FIRST;
break;
case VPX_RC_LAST_PASS:
oxcf->mode = TWO_PASS_SECOND_BEST;
break;
}
cpi->pass = get_pass(oxcf->mode).
Now pass is moved to VP9EncoderConfig and initialization is simple:
switch (cfg->g_pass) {
case VPX_RC_ONE_PASS:
oxcf->pass = 0;
break;
case VPX_RC_FIRST_PASS:
oxcf->pass = 1;
break;
case VPX_RC_LAST_PASS:
oxcf->pass = 2;
break;
}
Change-Id: I8f582203a4575f5e39b071598484a8ad2b72e0d9
1. Remove last reference flag for first frame upper layers in one pass mode.
2. Disable refresh golden frame flag for key frames.
Change-Id: I44ac1bd2c795169e4fbfdd078ea79a1d33a204d6
All changes are for spatial svc only.
1. Enable encoding hidden frames in each layer and use alt reference idex to reference the hidden frame in each layer
2. Use golden reference idx for spatial reference
3. For those layers that don't have hidden frames (caused by lack of frame buffers), reference a hidden frame in lower layers
4. Add "auto-alt-refs" in svc options
Change-Id: Idf27d1fd2fb5f3ffd9e86d2119235e3dad36c178
Add indirection to the section of buffer indices.
This is to help simplify things in the future if we
have other codec features that switch indices.
Limit the max GF interval for static sections to fit
the gf_group structures.
Change-Id: I38310daaf23fd906004c0e8ee3e99e15570f84cb
This patch implements a mechanism for inserting a second
arf at the mid position of arf groups.
It is currently disabled by default using the flag multi_arf_enabled.
Results are currently down somewhat in initial testing if
multi-arf is enabled. Most of the loss is attributable to the
fact that code to preserve the previous golden frame
(in the arf buffer) in cases where we are coding an overlay
frame, is currently disabled in the multi-arf case.
Change-Id: I1d777318ca09f147db2e8c86d7315fe86168c865
If we are already saving a lot in bits from the target (maximum)
bitrate in the constrained quality mode, allow the quantizer
to go lower than the cq level. This hopefully will solve issues
with getting too low a bitrate and consequently poor quality for
certain videos in cq mode.
Change-Id: I1c4e8b0171fcf58f95198b3add85eea5f3c8f19f
Allow slightly larger minq-maxq range for P frames. This improves
the compression performance of speed -5 for rtc set by 2.7% in psnr.
Change-Id: I438653d52d0fe51111509c6092e2334bac2de0cf
tx_mode supercedes whatever mechanism is used to push for 16x16
allowing for the use of the 4x4 transform.
Change-Id: I6c3f05ab9fe52050e40cc6303de9334653763289
Merged minq tables for arf and gf cases.
These tables were almost the same and for
VBR the arf table was not used at all.
Change-Id: Ie3c87e91dab613cf06f6945ac1ace0e0e4213d34
Small adjustment to the active Q range calculations.
These changes should slightly extend the available Q range
for KF/GF/ARF and narrow it for other frames.
The results for this change in isolation are broadly positive
for SSIM and average PSNR and slightly up but mixed for opsnr.
derf +0.293% opsnr, +1.286% SSIM
std-hd + 0.528% opsnr, + 1.746% SSIM
yt +0.056% opsnr, +0.457% SSIM
yt-hd -0.147% opsnr, + 0.226% SSIM
Change-Id: If065280342027ecc5d44b49fc1d440dfef041002
This member of VP9_COMP seemed unnecessary since it
only shadowed VP9EncoderConfig.key_freq that is
accessible through VP9_COMP.
Change-Id: Ib751bb1cf1b0b3c50a2a527d7c34f6829dd6fee3
The end_useage parameter is confusingly named since it
now actually defines the rate control method used.
Change-Id: I98912caabfe556b7af0b939a645d1336409e4d71
To make direct side by side testing this patch combines two
VBR corrections schemes to allow more direct side by side testing.
(The other patch was by Debargha chg id I0cd1f7...)
Change-Id: I271c45e5c4ccf8de8305589000218b80d9dc3a25
Add code to monitor over and under spend and
apply limited correction to the data rate of subsequent
frames. To prevent the problem of starvation or overspend
on individual frames (especially near the end of a clip) the
maximum adjustment on a single frame is limited to a %
of its un-modified allocation.
Change-Id: I6e1ca035ab8afb0c98eac4392115d0752d9cbd7f
Fix rate control bug whereby the rate factor heuristics
were being updated on arf overlays causing a rate surge
for a few frames followed by a corrective drop.
This fix eliminates many of the overshoot problems that
we were seeing on hard clips (even without applying
stricter vbr rate control) and also helps quality on
almost all clips with some hard clips improving by >5%.
Overall quality results measured at speed 2.
Derf +1.78% opsnr , +2.44% SSIM
Stdhd +2.41% opsnr, +2.85% SSIM
Change-Id: I2369df6295c2705963fa6307877f6acb304bcc39
This increases the range of Q values available to
normal inter frames to allow encoder a better chance
to hit the target rate.
Change-Id: I33cd96469a46577fdcea631e26d3355710909e6d
The limits applied under the flag
"LIMIT_QRANGE_FOR_ALTREF_AND_KEY"
behaved in an undesirable way if the gap between
active_worst_quality and active_best_quality was
changed.
In this patch, the adjustment is made using the
vp9_compute_qdelta_by_rate() function and fixed
rate multiplier values. Hence it is not impacted by
the relative value of active_best_quality.
Change-Id: I93b3308e04ade1e4eb5af63edf64f91cd3700249
ARF overlays now use the same rate correction factor as regular inter
frames, further testing would be needed to see if it makes sense to use
a completely separate rate correction factor for ARF overlays.
$ vpxenc --cpu-used=5 --fps=50/1 --target-bitrate=2000
parkjoy.y4m -o out.webm
=> Before: 3356 kb/s
=> After: 2271 kb/s
Change-Id: I73e4defa615ba7a8a2bdb845864f4b1721cbbffe
Turns off the DISABLE_RC_LONG_TERM_MEM macro and makes other changes
in the way the bits are updated, to make 2-pass rate control track
target bitrates closer.
Change-Id: I5f3be4b11c2908e6a9a9a1dd4fcf4e65531c44d8
This commit reduces the frequency of frames using finer quantizer
in non-RD coding flow, and slightly tune up the quantizer resolution
when used. It provides 1.7% compression gains in speed -5 at no speed
difference.
Change-Id: I430249a51260a841a0402666e5ec1566e4f7d5a6
The new tolerance is a little higher than before (especially
for kf/gf/arf) so this change gives an encode speed up
for some clips up for speeds 0-2.
Change-Id: I63f7d6c9cc11c7f58742f41e250dcd3eab1741eb
This code/setting was actually not used (since speed features were not set on first frame,
until a recent change) and should be removed.
In CBR mode, the q value for the first frame can be controlled by setting
the target size via the parameters rc_buf_initial_sz (and max_intra_size_pct).
Change-Id: I65afc64972b36c449bd5a8c25800e65da5389066
Use a crude correction factor to correct for
lower compression efficiency at higher encode
speeds when estimating the max Q for the
clip.
Change-Id: I5ae377647f4adf5e91d700a8791fb3b8f70efc73
This commit optimizes the bit allocation for the non-RD coding flow.
It applies slightly better quantizer to the frames, where all blocks
run a non-RD partition search. Such frames typically have better
rate-distortion trade off, thus improving the reconstruction quality
for next few frames reference at reasonably low increment in rate
cost.
The coding performance for rtc set at speed -5 with error-resilient
tuned on and rate control set as cbr is improved by 19.58%. It improved
the coding speed by about 10% for a portion of local test clips.
Change-Id: I9d56696cd4359dc8136ca10aff10fff05aaa2686
Adds a method for determining a fixed size partition based on
variance of a 64x64 SB. This method is added to rtc speed 6.
Also fixes a bug in rtc_use_partition() and includes some
refactoring related to partitioning search, and some cosmetics.
Currently compared to speed 5, the coding efficiency of speed 6
is -19% and that of speed 7 is -55%, in cbr mode.
Change-Id: I057e04125a8b765906bb7d4bf7a36d1e575de7c6
Only use layered average size if number_temporal_layers > 1.
Also removed unneeded commented-out line, and change some parameter
setting in vpx_temporal_scalable_patterns.c
Change-Id: Ic86e43e7daf0313e8c5a4aba1497299158111955
Removes certain cases of feedback of active_worst_quality,
and removes it from the RATE_CONTROL structure. Now active
worst quality is expected to be computed locally in the
q picking function during the encode.
Making temporal filter strength depend on avg_frame_qindex
rather than on active_worst_quality actually improves
performance esp. for yt.
derf: +0.038%
yt: +0.359%
Change-Id: I1fe5a343034b55af9322289165321f00ac0827b1
Some parameter changes and fixes on one-pass rate control.
derfraw300 is now only 10% below 2-pass speed 0 rate control.
Change-Id: I1940eef8a5a035dc18e71b880d5e00cabd1f01b9
-Properly set the average frame size for each layer.
-Allow each layer to update its average/last Q stats after encoding.
-Initialize for some layer context variables.
Change-Id: Iaa37d144fcf4f30ff4283a4e8db8b9ca8bf4c815
Fixes some of the parameters for 1-pass non-cbr mode.
Also includes some cleanups, inlcuding refactoring of the
recode_loop options.
Results on derfraw300 improve by about 5-6%, so that the one-pass
mode is now 13% below the 2-pass mode in speed 0.
Change-Id: I844cc2638694c7574f3be00d41d60b23dc1016f0
This patch adds a buffer-based rate control for temporal layers,
under CBR mode.
Added vpx_temporal_scalable_patters.c encoder for testing temporal
layers, for both vp9 and vp8 (replaces the old vp8_scalable_patterns).
Updated datarate unittest with tests for temporal layer rate-targeting.
Change-Id: I8900a854288b9354d9c697cfeb0243a9fd6790b1
Inlcudes a number cleanups:
1. Moves the one-pass pre-encode parameter setting functions
to vp9_ratectrl.c
2. Deprecates per_frame_bandwidth in RATE_CONTROL structure
3. Removes target_bandwidth in cpi structure since it is not used.
4. Various renaming of functions
There is no bit-stream change in 2-pass, one-pass cbr and one-pass
vbr modes.
Change-Id: Ifd9916bf4d485b7d04c5f52044ffe6703254ccbd
Fixes rate control partially in one-pass non-cbr case to achieve a
bitrate close to the one desired. Previous version was way off at
the high bitrate end.
Also includes several one-pass rate control cleanups and refactoring.
On derfraw300, one-pass encoding is now 19% off from two-pass speed
0 encoding, down from 35%.
Change-Id: I6f0dcdb7f8aa85a7e7cd3a3155d4f9d2a4d2f4f4
Includes a few fixes and clean-ups that adds the ability
to use alt-ref frames in one-pass mode.
Whether alt-refs are actually used or not is controlled by a
macro USE_ALTREF_FOR_ONE_PASS in vp9_firstpass.c.
This first cut seems to improve derf by 15+% in 1-pass mode.
But further experiments with parameters are underway.
Change-Id: I78254421435478003367c788c7930d2dc4ee2816
Fixes assert that fails occasionally on small values of
max-key frame intervals. Also, adds a small change on
updating frames_to_key for frame drops.
Change-Id: Icc2b33b25e3e4ced7e49f8db73e0a887ef9c99e0
Applies an upper limit on burst bitrate for any
frame. This is to insure that typical encodes for YT
do not produce frames that are so large that they
risk stalling HW implementations. Such frames
could also cause playback problems in SW.
For now the limit is set at 250 bits per MB for 1080P
and larger (with the 1080P limit used for smaller frames).
Setting maxQ, constant quality mode or targeting a
very high bandwidth will have precedence over this limit.
Change-Id: Ie6f776c38b06ac7cec043d034085f4b79ee46a38