Start grouping data per-plane, as part of refactoring to support
additional planes, and chroma planes with other-than 4:2:0
subsampling.
Change-Id: Idb76a0e23ab239180c818025bae1f36f1608bb23
Took vp9_setup_scale_factors_for_frame() out from
vp9_setup_interp_filters(), so that it is only called once per
frame instead of per macroblock. Decoder tests showed a 1.5%
performance gain.
Change-Id: I770cb09eb2140ab85132f82aed388ac0bdd3a0aa
General code cleanup in loopfilter code. Modification of setup_frame_size,
so now VP9_COMMON is modified in one place after all width/height checks
passed.
Change-Id: Iedf32df43a912d7aae788ed276ac6c429973f6fe
Rename the file and clean up includes. In the future we would like to
pattern match the files which need additional compiler flags.
Change-Id: I2c76256467f392a78dd4ccc71e6e0a580e158e56
The patch adds the flexibility to use standard EOB based coding
on smaller block sizes and nzc based coding on larger blocksizes.
The tx-sizes that use nzc based coding and those that use EOB based
coding are controlled by a function get_nzc_used().
By default, this function uses nzc based coding for 16x16 and 32x32
transform blocks, which seem to bridge the performance gap
substantially.
All sets are now lower by 0.5% to 0.7%, as opposed to ~1.8% before.
Change-Id: I06abed3df57b52d241ea1f51b0d571c71e38fd0b
Almost all arguments for vp9_build_inter32x32_predictors_sb and
vp9_build_inter64x64_predictors_sb can be deduced from the first macroblock
argument.
Change-Id: I5d477a607586d05698d5b3b9b9bc03891dd3fe83
Extracting setup_frame_size and update_frame_context functions. Introducing
vp9_read_prob function as shortcut for (vp9_prob)vp9_read_literal(r, 8).
Change-Id: Ia5c68fd725b2d1b9c5eb20f69cacb62361b5a3dd
Wrote sse2 version of vp9_short_idct_32x32 function. Compared
to c version, the sse2 version is 5X faster.
Change-Id: I071ab7378358346ab4d9c6e2980f713c3c209864
This gains about 0.2% on derf, 0.1% on hd and 0.4% on stdhd. I can put
this under an experimental flag if wanted, just trying to get my patch
queue in shape.
Change-Id: Ibe1a30fe0e0b07bec4802e0f3ff0ba22e505f576
Adds an experiment to use a weighted prediction of two INTER
predictors, where the weight is one of (1/4, 3/4), (3/8, 5/8),
(1/2, 1/2), (5/8, 3/8) or (3/4, 1/4), and is chosen implicitly
based on consistency of the predictors to the already
reconstructed pixels to the top and left of the current macroblock
or superblock.
Currently the weighting is not applied to SPLITMV modes, which
default to the usual (1/2, 1/2) weighting. However the code is in
place controlled by a macro. The same weighting is used for Y and
UV components, where the weight is derived from analyzing the Y
component only.
Results (over compound inter-intra experiment)
derf: +0.18%
yt: +0.34%
hd: +0.49%
stdhd: +0.23%
The experiment suggests bigger benefit for explicitly signaled weights.
Change-Id: I5438539ff4485c5752874cd1eb078ff14bf5235a
These are mostly just for experimental purposes. I saw small gains (in
the 0.1% range) when playing with this on derf.
Change-Id: Ib21eed477bbb46bddcd73b21c5c708a5b46abedc
Now that the first AC coefficient in both directions use the same DC
as their context, there no longer is a purpose in letting both have
their own band. Merging these two bands allows us to split bands for
some of the very high-frequency AC bands.
In addition, I'm redoing the banding for the 1D-ADST col/row scans. I
don't think the old banding made any sense at all (it merged the last
coefficient of the first row/col in the same band as the first two of
the second row/col), which was clearly an oversight from the band being
applied in scan-order (rather than in their actual position). Now,
coefficients at the same position will be in the same band, regardless
what scan order is used. I think this makes most sense for the purpose
of banding, which is basically "predict energy for this coefficient
depending on the energy of context coefficients" (i.e. pt).
After full re-training, together with previous patch, derf gains about
1.2-1.3%, and hd/stdhd gain about 0.9-1.0%.
Change-Id: I7a0cc12ba724e88b278034113cb4adaaebf87e0c
Pearson correlation for above or left is significantly higher than for
previous-in-scan-order (absolute values depend on position in scan, but
in general, we gain about 0.1-0.2 by using either above or left; using
both basically just makes this even better). For eob branch skipping,
we continue to use the previous token in scan order.
This helps about 0.9% on derf after re-training on a limited data set.
Full re-training and results on larger-resolution clips are pending.
Note that this commit breaks trellis, so we can probably get further
gains out of it by fixing trellis at some later point.
Change-Id: Iead68e296fc3a105cca746b5e3da9555d6010cfe