This patch changes the coefficient tree to move the EOB to below
the ZERO node in order to save number of bool decodes.
The advantages of moving EOB one step down as opposed to two steps down
in the other parallel patch are: 1. The coef modeling based on
the One-node becomes independent of the tree structure above it, and
2. Fewer conext/counter increases are needed.
The drawback is that the potential savings in bool decodes will be
less, but assuming that 0s are much more predominant than 1's the
potential savings is still likely to be substantial.
Results on derf300: -0.237%
Change-Id: Ie784be13dc98291306b338e8228703a4c2ea2242
Removed one 4x4 prediction step that was unnessary in the rd loop.
Removed a unused modecosts estimate from encoder side.
Change-Id: I65221a52719d6876492996955ef04142d2752d86
1. remove prediction mode conversion
2. unified bmode, same for key and non-key frame
3. set I4X4_PRED count for pdf to 0, as I4X4_PRED is no longer
coded ever. It is determined by ref_frame and block partition
Change-Id: If5b282957c24339b241acdb9f2afef85658fe47d
Also do per-partition motion vector referencing in <sb8x8 partitions,
and adjust mvref finding for sub8x8 partitions.
Change-Id: Id3ed1ed4d2a8910d11d327db6cc63b8eb79f941f
Move 4x4/4x8/8x4 partition coding out of experimental list.
This commit fixed the unit test failure issues. It also resolved
the merge conflicts between 4x4 block level partition and iterative
motion search for comp_inter_inter.
Change-Id: I898671f0631f5ddc4f5cc68d4c62ead7de9c5a58
This commit allows the rate-distortion optimization recursion
at encoder to go down to 4x4 block size. It deprecates the use
of I4X4_PRED and SPLITMV syntax elements from bit-stream
writing/reading. Will remove the unused probability models in
the next patch.
The partition type search and bit-stream are now capable of
supporting the rectangular partition of 8x8 block, i.e., 8x4
and 4x8. Need to revise the rate-distortion parts to get these
two partition tested in the rd loop.
Change-Id: I0dfe3b90a1507ad6138db10cc58e6e237a06a9d6
This commit enables the search for the optimal superblock
partition types in the recursion form. The intention is to
make the optimization process more concise and ready to
support partition down to 4x4 block size next.
Change-Id: Iae279a67df3a7cc372553c84c775bc4d2f3e4336
This allows removing a large number of transform size specific functions,
as well as supporting 444/alpha by routing all code through the
subsampling-aware path.
Change-Id: Ieb085cebe9f37f24fc24de179898b22abfda08a4
Work-in-progress, not yet ready for review. TODO items:
- bitstream writing (encoder) and reading (decoder)
- decoder reconstruction
Change-Id: I5afb7284e7e0480847b47cd0097cb469433c9081
All members can be referenced from their per-plane counterparts, and
removes assumptions about 24 blocks per macroblock.
Change-Id: I593fb0715e74cd84b48facd1c9b18c3ae1185d4b
This commit enables selecting probability models for recursive block
partition information syntax, depending on its above/left partition
information, as well as the current block size. These conditional
probability models are reasonably stationary and consistent across
frames, hence the backward adaptive approach is used to maintain and
update the contextual models.
It achieves coding performance gains (on top of enabling rectangular
block sizes):
derf: 0.242%
yt: 0.391%
hd: 0.376%
stdhd: 0.645%
Change-Id: Ie513d9673337f0d27abd65fb566b711d0844ec2e
Quantizers can vary per plane, but not per block. Move these values to
the per-plane part of MACROBLOCK.
Change-Id: I320a55e38b7b28b29aec751a4aca5ccd0c9b9326
This commit moves the coeff storage from the MACROBLOCK struct to its
per-plane part. The next commit will remove the coeff member from the
BLOCK structure so that it is consistently accessed per-plane.
Also refactors vp9_sb_block_error_c and vp9_sb_uv_block_error_c to be
variable subsampling aware.
Change-Id: I18c30f87f27c3a012119b6c1970d5fa499804455
First in a series of commits making certain MACROBLOCK members
addressable per-plane. This commit also refactors the block subtraction
functions vp9_subtract_b, vp9_subtract_sby_c, etc to be
loops-over-planes and variable subsampling aware.
Change-Id: I371d092b914ae0a495dfd852ea1a3d2467be6ec3
This version of speed 1 only disables modes at higher resolution that
had distortions >2x the best mode we found...
The hope is that this could be a replacement for speed 0 ...
Change-Id: I7421f1016b8958314469da84c4dccddf25390720
Adds RD integration for 32x16, 16x32, 64x32 and 32x64 rectangular blocks.
Derf almost +0.6%, HD a little over +1.0%, STDHD +1.3%.
Change-Id: Id651fdb6a655fdbb5c47009757e63317acfb88a5
Merge sb32x32 and sb64x64 functions; allow for rectangular sizes. Code
gives identical encoder results before and after. There are a few
macros for rectangular block sizes under the sbsegment experiment; this
experiment is not yet functional and should not yet be used.
Change-Id: I71f93b5d2a1596e99a6f01f29c3f0a456694d728
These are mostly just for experimental purposes. I saw small gains (in
the 0.1% range) when playing with this on derf.
Change-Id: Ib21eed477bbb46bddcd73b21c5c708a5b46abedc
This patch revamps the entropy coding of coefficients to code first
a non-zero count per coded block and correspondingly remove the EOB
token from the token set.
STATUS:
Main encode/decode code achieving encode/decode sync - done.
Forward and backward probability updates to the nzcs - done.
Rd costing updates for nzcs - done.
Note: The dynamic progrmaming apporach used in trellis quantization
is not exactly compatible with nzcs. A suboptimal approach has been
used instead where branch costs are updated to account for changes
in the nzcs.
TODO:
Training the default probs/counts for nzcs
Change-Id: I951bc1e22f47885077a7453a09b0493daa77883d
Split macroblock and superblock tokenization and detokenization
functions and coefficient-related data structs so that the bitstream
layout and related code of superblock coefficients looks less like it's
a hack to fit macroblocks in superblocks.
In addition, unify chroma transform size selection from luma transform
size (i.e. always use the same size, as long as it fits the predictor);
in practice, this means 32x32 and 64x64 superblocks using the 16x16 luma
transform will now use the 16x16 (instead of the 8x8) chroma transform,
and 64x64 superblocks using the 32x32 luma transform will now use the
32x32 (instead of the 16x16) chroma transform.
Lastly, add a trellis optimize function for 32x32 transform blocks.
HD gains about 0.3%, STDHD about 0.15% and derf about 0.1%. There's
a few negative points here and there that I might want to analyze
a little closer.
Change-Id: Ibad7c3ddfe1acfc52771dfc27c03e9783e054430
1. Added a bit in frame header to to indicate if a frame is encoded
in lossless mode, so decoder does not make the decision based on Q0
2. Minor changes to make sure that lossy coding works same as when
the lossless experiment is not enabled.
3. Renamed function pointers for transforms to be consistent, using
prefix fwd_txm and inv_txm for forward and inverse respectively
To encode in lossless mode, using "--lossless=1 --min-q=0 --max-q=0"
with vpxenc.
Change-Id: Ifae53b26d2ffbe378d707e29d96817b8a5e6c068
Remove eob_max_offset markers and replace
with the generic skip_block flag to indicate
to the quantizer that all coeffs to be set to 0
and eob position set to 0;
Change-Id: Id477e8f8d4ec1a5562758904071013c24b76bfd7
For coefficients, use int16_t (instead of short); for pixel values in
16-bit intermediates, use uint16_t (instead of unsigned short); for all
others, use uint8_t (instead of unsigned char).
Change-Id: I3619cd9abf106c3742eccc2e2f5e89a62774f7da
Some further changes and refactoring of mv
reference code and selection of center point for
searches. Mainly relates to not passing so many
different local copies of things around.
Some place holder comments.
Change-Id: I309f10ffe9a9cde7663e7eae19eb594371c8d055
Use these, instead of the 4/5-dimensional arrays, to hold statistics,
counts, accumulations and probabilities for coefficient tokens. This
commit also re-allows ENTROPY_STATS to compile.
Change-Id: If441ffac936f52a3af91d8f2922ea8a0ceabdaa5
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b