the --enable-postproc-visualizer configure option remains as a no-op as
do the control names and values for compatibility
+ remove the corresponding debug flags from vpxdec: --pp-*
Change-Id: I4a001cd9962b59560d7d6bda6272d4ff32b8d37c
these are only used in the encoder.
frames_since_golden / frames_till_alt_ref_frame -> VP[89]_COMP
Change-Id: Ie14a6f46987bced685ddb449b85dc261caba6dfe
this was never fleshed out in the context of VP8, for which it was
added. for VP9 it has no meaning.
Change-Id: Iba2ecc026d9e947067b96690245d337e51e26eff
When error concealment is enabled, it swaps the mi and prev_mi ptrs after
each frame is decoded. The postproc uses the mi ptr for the mode info context.
Now the postproc will use the correct mode info context.
Change-Id: I537ae5450f319c624999b44525bb52bb30047b7b
If the threshold(limits) <= 0, skipped filtering and copied the
frame directly. Also, fixed memory allocation checking.
Change-Id: If3d79d5b2bcb71b9777e6eb5cba1384585131e22
The backup MODE_INFO buffer used in the error concealment was
allocated in the codec common parts allocation even though this is a
decoder only resource. Moved the allocation to the decoder side.
No need to update_mode_info_border as mode_info buffers are zero
allocated.
This fixes also a potential memory leak as the EC overlaps buffer was not
properly released before reallocation after a frame size change.
Change-Id: I12803d3e012308d95669069980b1c95973fb775f
Key frame macrobock and block mode probabilities are constant.
Remove the allocation of tables for each codec instance and use
instead the default const prob tables.
Change-Id: I8361798ac491f9b3889e86925a494c58647c753f
Mode token tabels precalculated in entropymode.c.
Removes vp8_initialize_common()as all common global data
is precalculated const now.
Change-Id: I9b2ccc883e4f618069e1bc180dad3a823394eb73
Adds logic to disable mfqe for the first frame after a configuration
change such as change in resolution. Also adds some missing
if CONFIG_POSTPROC macro checks.
Change-Id: If29053dad50b676bd29189ab7f9fe250eb5d30b3
This is a proof of concept RTCD implementation to replace the current
system of nested includes, prototypes, INVOKE macros, etc. Currently
only the decoder specific functions are implemented in the new system.
Additional functions will be added in subsequent commits.
Overview:
RTCD "functions" are implemented as either a global function pointer
or a macro (when only one eligible specialization available).
Functions which have RTCD specializations are listed using a simple
DSL identifying the function's base name, its prototype, and the
architecture extensions that specializations are available for.
Advantages over the old system:
- No INVOKE macros. A call to an RTCD function looks like an ordinary
function call.
- No need to pass vtables around.
- If there is only one eligible function to call, the function is
called directly, rather than indirecting through a function pointer.
- Supports the notion of "required" extensions, so in combination with
the above, on x86_64 if the best function available is sse2 or lower
it will be called directly, since all x86_64 platforms implement
sse2.
- Elides all references to functions which will never be called, which
could reduce binary size. For example if sse2 is required and there
are both mmx and sse2 implementations of a certain function, the
code will have no link time references to the mmx code.
- Significantly easier to add a new function, just one file to edit.
Disadvantages:
- Requires global writable data (though this is not a new requirement)
- 1 new generated source file.
Change-Id: Iae6edab65315f79c168485c96872641c5aa09d55
with deblock or demacroblock filters. When --mfqe is used together
with --demacroblock or --deblock, mfqe is applied first and then
demacroblock/deblock is applied to the mfqe result.
Change-Id: Id83ee01f1b4a33a116f071dcf26d59c7f3497c32
This patch removes the local copies of the dequantize
constants and implements John's idea as described
in "Make a local copy of the dequantized data" commit.
Change-Id: Ic6b7d681f00bf63263f71ff1e39ab2f80729e8b2
These functions are now used by the encoder.
This is WIP with the goal of creating a common idct/add for
the encoder and decoder. A boost of 1.8% was seen for
the HD rt test clip used.
[Tero] Added needed changes to ARM side.
Change-Id: Ibbb8000be09034203d7adffc457d3c3f8b06a5bf
sharpness was not recalculated in vp8cx_pick_filter_level_fast
remove last_filter_type. all values are calculated, don't need to update
the lfi data when it changes.
always use cm->sharpness_level. the extra indirection was annoying.
don't track last frame_type or sharpness_level manually. frame type
only matters for motion search and sharpness_level is taken care of in
frame_init
move function declarations to their proper header
Change-Id: I7ef037bd4bf8cf5e37d2d36bd03b5e22a2ad91db
Separate simple filter with reduced no. of parameters.
MB filter level picking based on precalculated table. Level table updated for
each frame. Inside and edge limits precalculated and updated just when
sharpness changes. HEV threshhold is constant.
ARM targets use scalars and others vectors.
Change works only with --target=generic-gnu
All other targets have to be updated!
Change-Id: I6b73aca6b525075b20129a371699b2561bd4d51c
There were many instances in the code of vp8_coef_tokens and
vp8_coef_tokens-1, which was a preprocessor macro despite the naming
convention. Replace these with MAX_ENTROPY_TOKENS and ENTROPY_NODES,
respectively.
Change-Id: I72c4f6c7634c94e1fa066cd511471e5592c748da
With this commit frames can be received partition-by-partition
from the encoder and passed partition-by-partition to the
decoder.
At the encoder-side this makes it easier to split encoded
frames at partition boundaries, useful when packetizing
frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled,
several VPX_CODEC_CX_FRAME_PKT packets will be returned
from vpx_codec_get_cx_data(), containing one partition
each. The partition_id (starting at 0) specifies the decoding
order of the partitions. All partitions but the last has
the VPX_FRAME_IS_FRAGMENT flag set.
At the decoder this opens up the possibility of decoding partition
N even though partition N-1 was lost (given that independent
partitioning has been enabled in the encoder) if more info
about the missing parts of the stream is available through
external signaling.
Each partition is passed to the decoder through the
vpx_codec_decode() function, with the data pointer pointing
to the start of the partition, and with data_sz equal to the
size of the partition. Missing partitions can be signaled to
the decoder by setting data != NULL and data_sz = 0. When
all partitions have been given to the decoder "end of data"
should be signaled by calling vpx_codec_decode() with
data = NULL and data_sz = 0.
The first partition is the first partition according to the
VP8 bitstream + the uncompressed data chunk + DCT address
offsets if multiple residual partitions are used.
Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
The error-concealer is plugged in after any motion vectors have been
decoded. It tries to estimate any missing motion vectors from the
motion vectors of the previous frame. Intra blocks with missing
residual are replaced with inter blocks with estimated motion vectors.
This feature was developed in a separate sandbox
(sandbox/holmer/error-concealment).
Change-Id: I5c8917b031078d79dbafd90f6006680e84a23412
the decision to run the regular or simple loopfilter is made outside the
function and managed with pointers
stop tracking the option in two places. use filter_type exclusively
Change-Id: I39d7b5d1352885efc632c0a94aaf56b72cc2fe15
Detect the number of available cores and limit the thread allocation
accordingly. On decoder side limit the number of threads to the max
number of token partition.
Core detetction works on Windows and
Posix platforms, which define _SC_NPROCESSORS_ONLN or _SC_NPROC_ONLN.
Change-Id: I76cbe37c18d3b8035e508b7a1795577674efc078
Scott pointed out that last_frame_type only gets updated while
loopfilter exists. Since last_frame_type is also needed in
motion search now, it needs to be updated every frame.
Change-Id: I9203532fd67361588d4024628d9ddb8e391ad912
This eliminates a large set of warnings exposed by the Mozilla build
system (Use of C++ comments in ISO C90 source, commas at the end of
enum lists, a couple incomplete initializers, and signed/unsigned
comparisons).
It also eliminates many (but not all) of the warnings expose by newer
GCC versions and _FORTIFY_SOURCE (e.g., calling fread and fwrite
without checking the return values).
There are a few spurious warnings left on my system:
../vp8/encoder/encodemb.c:274:9: warning: 'sz' may be used
uninitialized in this function
gcc seems to be unable to figure out that the value shortcut doesn't
change between the two if blocks that test it here.
../vp8/encoder/onyx_if.c:5314:5: warning: comparison of unsigned
expression >= 0 is always true
../vp8/encoder/onyx_if.c:5319:5: warning: comparison of unsigned
expression >= 0 is always true
This is true, so far as it goes, but it's comparing against an enum, and the C
standard does not mandate that enums be unsigned, so the checks can't be
removed.
Change-Id: Iaf689ae3e3d0ddc5ade00faa474debe73b8d3395
The primary goal is to allow a binary to be built which supports
NEON, but can fall back to non-NEON routines, since some Android
devices do not have NEON, even if they are otherwise ARMv7 (e.g.,
Tegra).
The configure-generated flags HAVE_ARMV7, etc., are used to decide
which versions of each function to build, and when
CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen
at run time.
In order for this to work, the CFLAGS must be set to something
appropriate (e.g., without -mfpu=neon for ARMv7, and with
appropriate -march and -mcpu for even earlier configurations), or
the native C code will not be able to run.
The ASFLAGS must remain set for the most advanced instruction set
required at build time, since the ARM assembler will refuse to emit
them otherwise.
I have not attempted to make any changes to configure to do this
automatically.
Doing so will probably require the addition of new configure options.
Many of the hooks for RTCD on ARM were already there, but a lot of
the code had bit-rotted, and a good deal of the ARM-specific code
is not integrated into the RTCD structs at all.
I did not try to resolve the latter, merely to add the minimal amount
of protection around them to allow RTCD to work.
Those functions that were called based on an ifdef at the calling
site were expanded to check the RTCD flags at that site, but they
should be added to an RTCD struct somewhere in the future.
The functions invoked with global function pointers still are, but
these should be moved into an RTCD struct for thread safety (I
believe every platform currently supported has atomic pointer
stores, but this is not guaranteed).
The encoder's boolhuff functions did not even have _c and armv7
suffixes, and the correct version was resolved at link time.
The token packing functions did have appropriate suffixes, but the
version was selected with a define, with no associated RTCD struct.
However, for both of these, the only armv7 instruction they actually
used was rbit, and this was completely superfluous, so I reworked
them to avoid it.
The only non-ARMv4 instruction remaining in them is clz, which is
ARMv5 (not even ARMv5TE is required).
Considering that there are no ARM-specific configs which are not at
least ARMv5TE, I did not try to detect these at runtime, and simply
enable them for ARMv5 and above.
Finally, the NEON register saving code was completely non-reentrant,
since it saved the registers to a global, static variable.
I moved the storage for this onto the stack.
A single binary built with this code was tested on an ARM11 (ARMv6)
and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder,
and produced identical output, while using the correct accelerated
functions on each.
I did not test on any earlier processors.
Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
Most of the code that actually uses these matrices indexes them as
if they were a single contiguous array, and coverity produces
reports about the resulting accesses that overflow the static
bounds of the first row.
This is perfectly legal in C, but converting them to actual [16]
arrays should eliminate the report, and removes a good deal of
extraneous indexing and address operators from the code.
Change-Id: Ibda479e2232b3e51f9edf3b355b8640520fdbf23
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
The main reason for the change was to reduce cycles in the token
decoder. (~1.5% gain for 32 bit) This layout should be more
cache friendly.
As a result of this change, the encoder had to be updated.
Change-Id: Id5e804169d8889da0378b3a519ac04dabd28c837
Note: dixie uses a similar layout
At the end of the decode, frame buffers were being copied.
The frames are not updated after the copy, they are just
for reference on later frames. This change allows multiple
references to the same frame buffer instead of copying it.
Changes needed to be made to the encoder to handle this. The
encoder is still doing frame buffer copies in similar places
where pointer reference could be done.
Change-Id: I7c38be4d23979cc49b5f17241ca3a78703803e66