Removal of the NEWCOEFCONTEXT experiment to
reduce code clutter and make it easier to experiment with
some other changes to the coefficient coding context.
Change-Id: Icd17b421384c354df6117cc714747647c5eb7e98
fixed format issues.
Implement the inverse 4x4 ADST using 9 multiplications. For this
particular dimension, the original ADST transform can be
factorized into simpler operations, hence is retained.
Change-Id: Ie5d9749942468df299ab74e90d92cd899569e960
Replace as_mv.{first, second} with a two element array, so that they
can easily be processed with an index variable.
Change-Id: I1e429155544d2a94a5b72a5b467c53d8b8728190
Cache the constant offset in one variable to prevent re-loading that
in each loop iteration, and mark the function as inline so we can use
the fact that the transform size is always known in the caller.
Almost 1% faster encoding overall.
Change-Id: Id78325a60b025057d8f4ecd9003a74086ccbf85a
Pass the current mb row and column around rather than the
recon_yoffset and recon_uvoffset, since those offsets will
change from predictor to predictor, based on the reference
frame selection.
Change-Id: If3f9df059e00f5048ca729d3d083ff428e1859c1
* changes:
Initial support for resolution changes on P-frames
Avoid allocating memory when resizing frames
Adds a test for the VP8E_SET_SCALEMODE control
Allows inter-frames to change resolution. Currently these are
almost equivalent to keyframes, as only intra prediction modes
are allowed, but without the other context resets that occur on
keyframes.
Change-Id: Icd1a2a5af0d9462cc792588427b0a1f5b12e40d3
This patch adds column-based tiling. The idea is to make each tile
independently decodable (after reading the common frame header) and
also independendly encodable (minus within-frame cost adjustments in
the RD loop) to speed-up hardware & software en/decoders if they used
multi-threading. Column-based tiling has the added advantage (over
other tiling methods) that it minimizes realtime use-case latency,
since all threads can start encoding data as soon as the first SB-row
worth of data is available to the encoder.
There is some test code that does random tile ordering in the decoder,
to confirm that each tile is indeed independently decodable from other
tiles in the same frame. At tile edges, all contexts assume default
values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode),
and motion vector search and ordering do not cross tiles in the same
frame.
t log
Tile independence is not maintained between frames ATM, i.e. tile 0 of
frame 1 is free to use motion vectors that point into any tile of frame
0. We support 1 (i.e. no tiling), 2 or 4 column-tiles.
The loopfilter crosses tile boundaries. I discussed this briefly with Aki
and he says that's OK. An in-loop loopfilter would need to do some sync
between tile threads, but that shouldn't be a big issue.
Resuls: with tiling disabled, we go up slightly because of improved edge
use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf,
~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5%
on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is
concentrated in the low-bitrate end of clips, and most of it is because
of the loss of edges at tile boundaries and the resulting loss of intra
predictors.
TODO:
- more tiles (perhaps allow row-based tiling also, and max. 8 tiles)?
- maybe optionally (for EC purposes), motion vectors themselves
should not cross tile edges, or we should emulate such borders as
if they were off-frame, to limit error propagation to within one
tile only. This doesn't have to be the default behaviour but could
be an optional bitstream flag.
Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
Update the code to call the new convolution functions to do subpixel
prediction rather than the existing functions. Remove the old C and
assembly code, since it is unused. This causes a 50% performance
reduction on the decoder, but that will be resolved when the asm for
the new functions is available.
There is no consensus for whether 6-tap or 2-tap predictors will be
supported in the final codec, so these filters are implemented in
terms of the 8-tap code, so that quality testing of these modes
can continue. Implementing the lower complexity algorithms is a
simple exercise, should it be necessary.
This code produces slightly better results in the EIGHTTAP_SMOOTH
case, since the filter is now applied in only one direction when
the subpel motion is only in one direction. Like the previous code,
the filtering is skipped entirely on full-pel MVs. This combination
seems to give the best quality gains, but this may be indicative of a
bug in the encoder's filter selection, since the encoder could
achieve the result of skipping the filtering on full-pel by selecting
one of the other filters. This should be revisited.
Quality gains on derf positive on almost all clips. The only clip
that seemed to be hurt at all datarates was football
(-0.115% PSNR average, -0.587% min). Overall averages 0.375% PSNR,
0.347% SSIM.
Change-Id: I7d469716091b1d89b4b08adde5863999319d69ff
This commit makes the NearestMV match the chosen
best reference MV. It can be a 0,0 or non zero vector
which means the the compound nearest mv mode can
combine a 0,0 and a non zero vector.
Change-Id: I2213d09996ae2916e53e6458d7d110350dcffd7a
This is identical to the later decisions made in encode_superblock().
This commit doesn't actually change anything, but makes the mbmi state
more consistent between the RD loop and the final encode result.
Change-Id: I9e735afb7c5a52e5b61728cb88c67ef9b9bf59be
The RD loop would change the pointer after the first mode (DC) was tested,
leading to corrupt block objects being provided for the others. This
would essentially render the i8x8 predictor useless.
Change-Id: I16c5906ca64fb34878ac32ce59af8974e4582bb8
First step in simplifying the segment mode and
segment EOB flags into a simpler segment skip
flag that implies 0,0 mv and EOB at position 0.
Change-Id: Ib750cac31a7a02dc21082580498efd9f7d8d72a5
Adds a flag to disable features that would inhibit frame parallel
decoding. This includes backward adaptation and MV sorting based
on search in ref frame buffer.
Also includes some minor clean-ups.
Change-Id: I434846717a47b7bcb244b37ea670c5cdf776f14d
Adds an error-resilient mode where frames can be continued
to be decoded even when there are errors (due to network losses)
on a prior frame. Specifically, backward updates are turned off
and probabilities of various symbols are reset to defaults at
the beginning of each frame. Further, the last frame's mvs are
not used for the mv reference list, and the sorting of the
initial list based on search on previous frames is turned off
as well.
Also adds a test where an arbitrary set of frames are skipped
from decoding to simulate errors. The test verifies (1) that if
the error frames are droppable - i.e. frame buffer updates have
been turned off - there are no mismatch errors for the remaining
frames after the error frames; and (2) if the error-frames are non
droppable, there are not only no decoding errors but the mismatch
PSNR between the decoder's version of the post-error frames and the
encoder's version is at least 20 dB.
Change-Id: Ie6e2bcd436b1e8643270356d3a930e8989ff52a5
Remove lst_fb_idx, gld_fb_idx, alt_fb_idx, refresh_last_frame,
refresh_golden_frame, refresh_alt_ref_frame from common. Gold/Alt are
encode side conventions. From the decoder's perspective, we want to be
dealing with numbered references.
Updates to active_ref 2 signal mode context switches, vestigial from
refresh_alt_ref_frame. This needs some clean up to make sense with
increased numbers of reference frames, as well as reimplementing the
swapping of alt/golden which was previously done using the
buffer-to-buffer copy mechanism removed in an earlier commit.
Change-Id: I7334445158b7666f9295d2a2dd22aa03f4485f58
These variables have the type int64_t, not long long. long long could
be a larger type than 64 bits. Emulate INT64_MAX for older versions of
MSVC, and remove the unreferenced vpx_ports/vpxtypes.h
Change-Id: Ideaca71838fcd3849d816d5ab17aa347c97d03b0
This experiment gives little gains and adds relatively much code
complexity (and it hinders other experiments), so let's get rid of
it.
Change-Id: Id25e79a137a1b8a01138aa27a1fa0ba4a2df274a
This prevents ill-defined behaviour, such as setting x->skip for a mode
that is excluded because of frame-level flags (e.g. filter selection,
compound prediction selection), then not breaking out of the RD loop
because the mode is not allowed, but keeping the flag on. Whatever mode
is iterated through next in the RD loop will then carry this flag, and
all sort of bad stuff happens, such as x->skip being set on intra pred
modes.
Change-Id: I5bec46b36e38292174acb1c564b3caf00a9b4b9a
This patch removes the old pred-filter experiment and replaces it
with one that is implemented using the switchable filter framework.
If the pred-filter experiment is enabled, three interopolation
filters are tested during mode selection; the standard 8-tap
interpolation filter, a sharp 8-tap filter and a (new) 8-tap
smoothing filter.
The 6-tap filter code has been preserved for now and if the
enable-6tap experiment is enabled (in addition to the pred-filter
experiment) the original 6-tap filter replaces the new 8-tap smooth
filter in the switchable mode.
The new experiment applies the prediction filter in cases of a
fractional-pel motion vector. Future patches will apply the filter
where the mv is pel-aligned and also to intra predicted blocks.
Change-Id: I08e8cba978f2bbf3019f8413f376b8e2cd85eba4
This is to add to the 64x64 transform experiment as an alternative to
a 64x64 DCT.
Two levels of wavelet decomposition is used on a 64x64 block, followed
by 16x16 DCT on the four lowest subbands. The highest three subbands
are left untransformed after the first level DWT.
Change-Id: I3d48d5800468d655191933894df6b46e15adca56
Mode selection for SBs could enter an infinite loop because
the interpolation filter mode index was not being reset
correctly.
Change-Id: I4bbe726f29ef5b6836e94884067c46084713cc11