This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
Calculations were incorrectly classified as either
SSE3 or SSSE3. Only using SSE2 instructions.
Cleanup function names and make non-RTCD code work
as well.
Change-Id: I48ad0218af0cc51c5078070a08511dee43ecfe09
Calculations were incorrectly classified as either
SSE3 or SSSE3. Only using SSE2 instructions.
Cleanup function names and make non-RTCD code work
as well.
Change-Id: I29f5c2ead342b2086a468029c15e2c1d948b5d97
In sub-pixel motion search, the search range is small(+/- 3 pixels).
Preload whole search area from reference buffer into a 32-byte
aligned buffer. Then in search, load reference data from this buffer
instead. This keeps data in cache, and reduces the crossing cache-
line penalty. For tulip clip, tests on Intel Core2 Quad machine(linux)
showed encoder speed improvement:
3.4% at --rt --cpu-used =-4
2.8% at --rt --cpu-used =-3
2.3% at --rt --cpu-used =-2
2.2% at --rt --cpu-used =-1
Test on Atom notebook showed only 1.1% speed improvement(speed=-4).
Test on Xeon machine also showed less improvement, since unaligned
data access latency is greatly reduced in newer cores.
Next, I will apply similar idea to other 2 sub-pixel search functions
for encoding speed > 4.
Make this change exclusively for x86 platforms.
Change-Id: Ia7bb9f56169eac0f01009fe2b2f2ab5b61d2eb2f
The encoder defined about 4 set of similar functions to calculate sum,
variance or sse or a combination of them. This commit removed one set
of these functions, get8x8var and get16x16var, where calls to the later
function are replaced with var16x16 by using the fact on a 16x16 MB:
variance == sse - sum*sum/256
Change-Id: I803eabd1fb3ab177780a40338cbd596dffaed267
1. Process 16 pixels at one time instead of 8.
2. Add check for both xoffset =0 and yoffset=0, which happens
during motion search.
This change gave encoder 1%~3% performance gain.
Change-Id: Idaa39506b48f4f8b2fbbeb45aae8226fa32afb3e
Use mpsadbw, and calculate 8 sad at once. Function list:
vp8_sad16x16x8_sse4
vp8_sad16x8x8_sse4
vp8_sad8x16x8_sse4
vp8_sad8x8x8_sse4
vp8_sad4x4x8_sse4
(test clip: tulip)
For best quality mode, this gave encoder a 5% performance boost.
For good quality mode with speed=1, this gave encoder a 3%
performance boost.
Change-Id: I083b5a39d39144f88dcbccbef95da6498e490134
This patch fixes the system dependent entries for the half-pixel
variance functions in both the RTCD and non-RTCD cases:
- The generic C versions of these functions are now correct.
Before all three cases called the hv code.
- Wire up the ARM functions in RTCD mode
- Created stubs for x86 to call the optimized subpixel functions
with the correct parameters, rather than falling back to C
code.
Change-Id: I1d937d074d929e0eb93aacb1232cc5e0ad1c6184
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d