- Using multiplication and shifting instead of division in
intra prediction.
- Maximum absolute difference is 1 for division statements
in d45, d27, d63 prediction modes. However, errors can
cumulate for large block sizes when using already predicted
values.
- Maximum number of non-matching result values in loops using
division are:
4x4 0/16
8x8 0/64
16x16 10/256
32x32 13/1024
64x64 122/4096
Overall PSNR
derf: 0.005
yt: -0.022
std-hd: 0.021
hd: -0.006
Change-Id: I3979a02eb6351636442c1af1e23d6c4e6ec1d01d
The issue was caused by a out-of-order merge, which leads to wrong
functions are called at lossless mode.
Change-Id: If157729abab62954c729e0377e7f53edb7db22ca
rebased.
This patch includes 16x16 butterfly inverse ADST/DCT hybrid
transform. It uses the variant ADST of kernel
sin((2k+1)*(2n+1)/4N),
which allows a butterfly implementation.
The coding gains as compared to DCT 16x16 are about 0.1% for
both derf and std-hd. It is noteworthy that for std-hd sets
many sequences gains about 0.5%, some 0.2%. There are also few
points that provides -1% to -3% performance. Hence the average
goes to about 0.1%.
Change-Id: Ie80ac84cf403390f6e5d282caa58723739e5ec17
The commit changes the coding mode to lossless whenever the lowest
quantizer is choosen.
As expected, test results showed no difference for cif and std-hd
set where Q0 is rarely used. For yt and yt-hd set, Q0 is used for
a number of clips, where this commit helped a lot in the high end.
Average over all clips in the sets:
yt: 2.391% 1.017% 1.066%
hd: 1.937% .764% .787%
Change-Id: I9fa9df8646fd70cb09ffe9e4202b86b67da16765
The 32x32 value in case of splitmv was uninitialized. this leads to
all kind of erratic behaviour down the line. Also fill in dummy values
for superblocks in keyframes (the values are currently unused, but we
run into integer overflows anyway, which makes detecting bad cases
harder). Lastly, in case we did not find any RD value at all, don't
set tx_diff to INT_MIN, but instead set it to zero (since if we couldn't
find a mode, it's unlikely that any particular transform would have made
that worse or better; rather, it's likely equally bad for all tx_sizes).
Change-Id: If236fd3aa2037e5b398d03f3b1978fbbc5ce740e
This issue breaks the encoding process of the codebase. The effect
emerges only in particular test sequence at certain bit-rates and
frame limits.
Change-Id: I02e080f2a49624eef9a21c424053dc2a1d902452
Since there is no Y2, these values are always zero. This changes the
bitstream results slightly, hence a separate commit.
Change-Id: I2f838f184341868f35113ec77ca89da53c4644e0
These allow sending partial bitstream packets over the network before
encoding a complete frame is completed, thus lowering end-to-end
latency. The tile-rows are not independent.
Change-Id: I99986595cbcbff9153e2a14f49b4aa7dee4768e2
Since addition of the larger-scale transforms (16x16, 32x32), these
don't give a benefit at macroblock-sizes anymore. At superblock-sizes,
2nd-order transform was never used over the larger transforms. Future
work should test whether there is a benefit for that use case.
Change-Id: I90cadfc42befaf201de3eb0c4f7330c56e33330a
This patch abstracts the selection of the coefficient band
context into a function as a precursor to further experiments
with the coefficient context.
It also removes the large per TX size coefficient band structures
and uses a single matrix for all block sizes within the test function.
This may have an impact on quality (results to follow) but is only an
intermediate step in the process of redefining the context. Also the
quality impact will be larger initially because the default tables will
be out of step with the new banding.
In particular the 4x4 will in this case only use 7 bands. If needed we
can add back block size dependency localized within the function, but
this can follow on after the other changes to the definition of the
context.
Change-Id: Id7009c2f4f9bb1d02b861af85fd8223d4285bde5
Reverted part of change
I19981d1ef0b33e4e5732739574f367fe82771a84
That gives rise to an enc/dec mismatch.
As things stand the memsets are still needed.
Change-Id: I9fa076a703909aa0c4da0059ac6ae19aa530db30
This is an initial step to facilitate experimentation
with changes to the prior token context used to code
coefficients to take better account of the energy of
preceding tokens.
This patch merely abstracts the selection of context into
two functions and does not alter the output.
Change-Id: I117fff0b49c61da83aed641e36620442f86def86
1. Added a bit in frame header to to indicate if a frame is encoded
in lossless mode, so decoder does not make the decision based on Q0
2. Minor changes to make sure that lossy coding works same as when
the lossless experiment is not enabled.
3. Renamed function pointers for transforms to be consistent, using
prefix fwd_txm and inv_txm for forward and inverse respectively
To encode in lossless mode, using "--lossless=1 --min-q=0 --max-q=0"
with vpxenc.
Change-Id: Ifae53b26d2ffbe378d707e29d96817b8a5e6c068
Initial ssse3 convolve avg functions and is one step closer
to using x86inc.asm. The decoder performance improved by 8% for
the test clip used. This should be revisited later to see if
averaging outside the loop is better than having many similar
filter functions.
Change-Id: Ice3fafb423b02710b0448ffca18b296bcac649e9
Removal of the NEWCOEFCONTEXT experiment to
reduce code clutter and make it easier to experiment with
some other changes to the coefficient coding context.
Change-Id: Icd17b421384c354df6117cc714747647c5eb7e98
Make the progress line more useful by providing per-frame updates of
processing frame rate and estimated time remaining.
Fixes issue #534.
Change-Id: Ic91551878ff4b2f5db1cedaafb588add220cfa52
A couple of scalar optimizations speeding up quantization by about 1.6x. Overall encoder speedup is around 3%.
Change-Id: I19981d1ef0b33e4e5732739574f367fe82771a84
This is after discussion with the hardware team. Update the unit test
to take these sizes into account. Split out some duplicate code into
a separate file so it can be shared.
Change-Id: I8311d11b0191d8bb37e8eb4ac962beb217e1bff5
Implement convolve8_avg using common functions which are already optimized
instead of using more obscure ones which have only C versions. Encoder
overall speed-up of about 12%.
Change-Id: I8c57aa76936c8a48f22b115f19f61d9f2ae1e4b6