This member of VP9_COMP seemed unnecessary since it
only shadowed VP9EncoderConfig.key_freq that is
accessible through VP9_COMP.
Change-Id: Ib751bb1cf1b0b3c50a2a527d7c34f6829dd6fee3
The end_useage parameter is confusingly named since it
now actually defines the rate control method used.
Change-Id: I98912caabfe556b7af0b939a645d1336409e4d71
To make direct side by side testing this patch combines two
VBR corrections schemes to allow more direct side by side testing.
(The other patch was by Debargha chg id I0cd1f7...)
Change-Id: I271c45e5c4ccf8de8305589000218b80d9dc3a25
Add code to monitor over and under spend and
apply limited correction to the data rate of subsequent
frames. To prevent the problem of starvation or overspend
on individual frames (especially near the end of a clip) the
maximum adjustment on a single frame is limited to a %
of its un-modified allocation.
Change-Id: I6e1ca035ab8afb0c98eac4392115d0752d9cbd7f
Fix rate control bug whereby the rate factor heuristics
were being updated on arf overlays causing a rate surge
for a few frames followed by a corrective drop.
This fix eliminates many of the overshoot problems that
we were seeing on hard clips (even without applying
stricter vbr rate control) and also helps quality on
almost all clips with some hard clips improving by >5%.
Overall quality results measured at speed 2.
Derf +1.78% opsnr , +2.44% SSIM
Stdhd +2.41% opsnr, +2.85% SSIM
Change-Id: I2369df6295c2705963fa6307877f6acb304bcc39
This increases the range of Q values available to
normal inter frames to allow encoder a better chance
to hit the target rate.
Change-Id: I33cd96469a46577fdcea631e26d3355710909e6d
The limits applied under the flag
"LIMIT_QRANGE_FOR_ALTREF_AND_KEY"
behaved in an undesirable way if the gap between
active_worst_quality and active_best_quality was
changed.
In this patch, the adjustment is made using the
vp9_compute_qdelta_by_rate() function and fixed
rate multiplier values. Hence it is not impacted by
the relative value of active_best_quality.
Change-Id: I93b3308e04ade1e4eb5af63edf64f91cd3700249
ARF overlays now use the same rate correction factor as regular inter
frames, further testing would be needed to see if it makes sense to use
a completely separate rate correction factor for ARF overlays.
$ vpxenc --cpu-used=5 --fps=50/1 --target-bitrate=2000
parkjoy.y4m -o out.webm
=> Before: 3356 kb/s
=> After: 2271 kb/s
Change-Id: I73e4defa615ba7a8a2bdb845864f4b1721cbbffe
Turns off the DISABLE_RC_LONG_TERM_MEM macro and makes other changes
in the way the bits are updated, to make 2-pass rate control track
target bitrates closer.
Change-Id: I5f3be4b11c2908e6a9a9a1dd4fcf4e65531c44d8
This commit reduces the frequency of frames using finer quantizer
in non-RD coding flow, and slightly tune up the quantizer resolution
when used. It provides 1.7% compression gains in speed -5 at no speed
difference.
Change-Id: I430249a51260a841a0402666e5ec1566e4f7d5a6
The new tolerance is a little higher than before (especially
for kf/gf/arf) so this change gives an encode speed up
for some clips up for speeds 0-2.
Change-Id: I63f7d6c9cc11c7f58742f41e250dcd3eab1741eb
This code/setting was actually not used (since speed features were not set on first frame,
until a recent change) and should be removed.
In CBR mode, the q value for the first frame can be controlled by setting
the target size via the parameters rc_buf_initial_sz (and max_intra_size_pct).
Change-Id: I65afc64972b36c449bd5a8c25800e65da5389066
Use a crude correction factor to correct for
lower compression efficiency at higher encode
speeds when estimating the max Q for the
clip.
Change-Id: I5ae377647f4adf5e91d700a8791fb3b8f70efc73