Merge sb32x32 and sb64x64 functions; allow for rectangular sizes. Code
gives identical encoder results before and after. There are a few
macros for rectangular block sizes under the sbsegment experiment; this
experiment is not yet functional and should not yet be used.
Change-Id: I71f93b5d2a1596e99a6f01f29c3f0a456694d728
Clamp only the motion vectors inferred from neighboring reference
macroblocks. The motion vectors obtained through motion search in
NEWMV mode are constrained during the search process, which allows
a relatively larger referencing region than the inferred mvs.
Hence further clamping the best mv provided by the motion search may
affect the efficacy of NEWMV mode.
Synchronized the decoding process. The decoded mvs in NEWMV modes
should be guaranteed to fit in the effective range. Put a mv range
clamping function there for security purpose.
This improves the coding performance of high motion sequences, e.g.,
derf set:
foreman 0.233%
husky 0.175%
icd 0.135%
mother_daughter 0.337%
pamphlet 0.561%
stdhd set:
blue_sky 0.408%
city 0.455%
also saw sunflower goes down by -0.469%.
Change-Id: I3fcbba669e56dab779857a8126a91b926e899cb5
Start grouping data per-plane, as part of refactoring to support
additional planes, and chroma planes with other-than 4:2:0
subsampling.
Change-Id: Idb76a0e23ab239180c818025bae1f36f1608bb23
The patch adds the flexibility to use standard EOB based coding
on smaller block sizes and nzc based coding on larger blocksizes.
The tx-sizes that use nzc based coding and those that use EOB based
coding are controlled by a function get_nzc_used().
By default, this function uses nzc based coding for 16x16 and 32x32
transform blocks, which seem to bridge the performance gap
substantially.
All sets are now lower by 0.5% to 0.7%, as opposed to ~1.8% before.
Change-Id: I06abed3df57b52d241ea1f51b0d571c71e38fd0b
Almost all arguments for vp9_build_inter32x32_predictors_sb and
vp9_build_inter64x64_predictors_sb can be deduced from the first macroblock
argument.
Change-Id: I5d477a607586d05698d5b3b9b9bc03891dd3fe83
Adds an experiment to use a weighted prediction of two INTER
predictors, where the weight is one of (1/4, 3/4), (3/8, 5/8),
(1/2, 1/2), (5/8, 3/8) or (3/4, 1/4), and is chosen implicitly
based on consistency of the predictors to the already
reconstructed pixels to the top and left of the current macroblock
or superblock.
Currently the weighting is not applied to SPLITMV modes, which
default to the usual (1/2, 1/2) weighting. However the code is in
place controlled by a macro. The same weighting is used for Y and
UV components, where the weight is derived from analyzing the Y
component only.
Results (over compound inter-intra experiment)
derf: +0.18%
yt: +0.34%
hd: +0.49%
stdhd: +0.23%
The experiment suggests bigger benefit for explicitly signaled weights.
Change-Id: I5438539ff4485c5752874cd1eb078ff14bf5235a
These are mostly just for experimental purposes. I saw small gains (in
the 0.1% range) when playing with this on derf.
Change-Id: Ib21eed477bbb46bddcd73b21c5c708a5b46abedc
Now that the first AC coefficient in both directions use the same DC
as their context, there no longer is a purpose in letting both have
their own band. Merging these two bands allows us to split bands for
some of the very high-frequency AC bands.
In addition, I'm redoing the banding for the 1D-ADST col/row scans. I
don't think the old banding made any sense at all (it merged the last
coefficient of the first row/col in the same band as the first two of
the second row/col), which was clearly an oversight from the band being
applied in scan-order (rather than in their actual position). Now,
coefficients at the same position will be in the same band, regardless
what scan order is used. I think this makes most sense for the purpose
of banding, which is basically "predict energy for this coefficient
depending on the energy of context coefficients" (i.e. pt).
After full re-training, together with previous patch, derf gains about
1.2-1.3%, and hd/stdhd gain about 0.9-1.0%.
Change-Id: I7a0cc12ba724e88b278034113cb4adaaebf87e0c
Pearson correlation for above or left is significantly higher than for
previous-in-scan-order (absolute values depend on position in scan, but
in general, we gain about 0.1-0.2 by using either above or left; using
both basically just makes this even better). For eob branch skipping,
we continue to use the previous token in scan order.
This helps about 0.9% on derf after re-training on a limited data set.
Full re-training and results on larger-resolution clips are pending.
Note that this commit breaks trellis, so we can probably get further
gains out of it by fixing trellis at some later point.
Change-Id: Iead68e296fc3a105cca746b5e3da9555d6010cfe
Renaming Width to width, Height to height and Version to version in
several structs and function signatures.
Change-Id: I084c3f7e747cb2ce3345aff27a3dff9b13a87543
Adjust the filter length and strength for each
ARF group based on a measure of difficulty (the boost)
and the active q range.
Remove lower limit on RDMULT value.
Average gains on the different sets in range 0.4%-0.9%.
However the ARNR changes give a very big boost on a
few clips.
Eg. Soccer ~5%, in derf set and Cyclist ~ 10% in the std-hd set
Change-Id: I2078d78798e27ad2bcc2b32d703ea37b67412ec4
This fix resolves some of the mismatch issues being seen
recently. While this is the right thing to do when tiling
is used for this experiment, it is not the underlying cause
of the the mismatches.
Something else is causing writing outside of the allowable
frame area in the encoder leading to this mismatch.
Change-Id: If52c6f67555aa18ab8762865384e323b47237277
Updates the YV12_BUFFER_CONFIG structure to be crop-aware. The
exiting width/height parameters are left unchanged, storing the
width and height algined to a 16 byte boundary. The cropped
dimensions are added as new fields.
This fixes a nasty visual pulse when switching between scaled and
unscaled frame dimensions due to a mismatch between the scaling
ratio and the 16-byte aligned sizes.
Change-Id: Id4a3f6aea6b9b9ae38bdfa1b87b7eb2cfcdd57b6
Adds probability updates for extra bits for the nzcs, code for
getting nzc stats, plus some minor cleanups and fixes.
Change-Id: If2814e7f04fb52f5025ad9f400f3e6c50a00b543
Increase the motion search range by 4x. Change MV_CLASS tree of the
entropy coding to allow two additional mv classes to cover the
extended motion vector limit. The codec determines the effective
motion search range conditioned on the actual frame dimension.
It provides coding gains:
stdhd 0.39%
yt 0.56%
hd 0.47%
Major coding performance gains are packed in several sequences with
intense motion activities, e.g., ped_1080p gains 7% at high bit-rates,
and on average 3%.
TODO: Need to further tune the rate control and motion search units.
Change-Id: Ib842540a6796fbee5a797809433ef6a477c6d78d
This also changes the RD search to take account of the correct block
index when searching (this is required for ADST positioning to work
correctly in combination with tx_select).
Change-Id: Ie50d05b3a024a64ecd0b376887aa38ac5f7b6af6
This patch revamps the entropy coding of coefficients to code first
a non-zero count per coded block and correspondingly remove the EOB
token from the token set.
STATUS:
Main encode/decode code achieving encode/decode sync - done.
Forward and backward probability updates to the nzcs - done.
Rd costing updates for nzcs - done.
Note: The dynamic progrmaming apporach used in trellis quantization
is not exactly compatible with nzcs. A suboptimal approach has been
used instead where branch costs are updated to account for changes
in the nzcs.
TODO:
Training the default probs/counts for nzcs
Change-Id: I951bc1e22f47885077a7453a09b0493daa77883d
Split macroblock and superblock tokenization and detokenization
functions and coefficient-related data structs so that the bitstream
layout and related code of superblock coefficients looks less like it's
a hack to fit macroblocks in superblocks.
In addition, unify chroma transform size selection from luma transform
size (i.e. always use the same size, as long as it fits the predictor);
in practice, this means 32x32 and 64x64 superblocks using the 16x16 luma
transform will now use the 16x16 (instead of the 8x8) chroma transform,
and 64x64 superblocks using the 32x32 luma transform will now use the
32x32 (instead of the 16x16) chroma transform.
Lastly, add a trellis optimize function for 32x32 transform blocks.
HD gains about 0.3%, STDHD about 0.15% and derf about 0.1%. There's
a few negative points here and there that I might want to analyze
a little closer.
Change-Id: Ibad7c3ddfe1acfc52771dfc27c03e9783e054430
This patch makes the encoder's use of ref_frame_map and active_ref_idx
consistent with the decoder. ref_frame_map[] maps a reference buffer
index to its actual location in the yv12_fb array, since many
references may share an underlying buffer. active_ref_idx[] mirrors
cpi->{lst,gld,alt}_fb_idx, holding the active references in each
slot.
This also fixes a bug in setup_buffer_inter() where the incorrect
reference was used to populate the scaling factors.
Change-Id: Id3728f6d77cffcd27c248903bf51f9c3e594287e
This patch extends the previous support for using references of a
different resolution in ZEROMV mode to all inter prediction modes.
Subpixel based best-mv scoring is disabled when the reference frame
differs in resolution from the current frame.
Change-Id: Id4dc3e5e6692de98d9857fd56bfad3ac57e944ac
This patch allows coding frames using references of different
resolution, in ZEROMV mode. For compound prediction, either
reference may be scaled.
To test, I use the resize_test and enable WRITE_RECON_BUFFER
in vp9_onyxd_if.c. It's also useful to apply this patch to
test/i420_video_source.h:
--- a/test/i420_video_source.h
+++ b/test/i420_video_source.h
@@ -93,6 +93,7 @@ class I420VideoSource : public VideoSource {
virtual void FillFrame() {
// Read a frame from input_file.
+ if (frame_ != 3)
if (fread(img_->img_data, raw_sz_, 1, input_file_) == 0) {
limit_ = frame_;
}
This forces the frame that the resolution changes on to be coded
with no motion, only scaling, and improves the quality of the
result.
Change-Id: I1ee75d19a437ff801192f767fd02a36bcbd1d496
Ensure that all inter prediction goes through a common code path
that takes scaling into account. Removes a bunch of duplicate
1st/2nd predictor code. Also introduces a 16x8 mode for 8x8
MVs, similar to the 8x4 trick we were doing before. This has an
unexpected effect with EIGHTTAP_SMOOTH, so it's disabled in that
case for now.
Change-Id: Ia053e823a8bc616a988a0af30452e1e75a739cba