Break MFQE code into it's own file.
It is currently only valid for 16x16 and 8x8 Y blocks. It also filters
4x4 U/V blocks.
Refactor filtering and add associated assembly. Limited test cases show
--mfqe introduces a penalty of ~20% with HD content. The assembly
reduces the penalty to ~15%
Change-Id: I4b8de6b5cdff5413037de5b6c42f437033ee55bf
Reworked the code to use vp8_build_intra_predictors_mby_s,
vp8_intra_prediction_down_copy, and vp8_intra4x4_predict_d_c
functions instead. vp8_intra4x4_predict_d_c is a decoder-only
version of vp8_intra4x4_predict. Future commits will fix this
code duplication.
Change-Id: Ifb4507103b7c83f8b94a872345191c49240154f5
Reworked the code to use vp8_build_intra_predictors_mbuv_s
instead. This is WIP with the goal of eliminating all
functions in reconintra_mt.h
Change-Id: I61c4a132684544b24a38c4a90044597c6ec0dd52
On Android NDK, rand() is inlined function. But, on our SSE optimization,
we need symbol for rand()
Change-Id: I42ab00e3255208ba95d7f9b9a8a3605ff58da8e1
As an optimization some architectures use the max_sad argument to break
out early from the SAD. Pass in INT_MAX instead of 0 to prevent this.
Change-Id: I653c476834b97771578d63f231233d445388629d
MFQE postproc crashed with stream dimensions not a multiple of 16.
The buffer was memset unconditionally, so if the buffer allocation
fails we end up trying to write to NULL.
This patch traps an allocation failure with vpx_internal_error(),
and aligns the buffer dimensions to what vp8_yv12_alloc_frame_buffer()
expects.
Change-Id: I3915d597cd66886a24f4ef39752751ebe6425066
This is the final commit in the series converting to the new RTCD
system. It removes the encoder csystemdependent files and the remaining
global function pointers that didn't conform to the old RTCD system.
Change-Id: I9649706f1bb89f0cbf431ab0e3e7552d37be4d8e
This commit continues the process of converting to the new RTCD
system. It removes the last of the VP8_ENCODER_RTCD struct references.
Change-Id: I2a44f52d7cccf5177e1ca98a028ead570d045395
This is a proof of concept RTCD implementation to replace the current
system of nested includes, prototypes, INVOKE macros, etc. Currently
only the decoder specific functions are implemented in the new system.
Additional functions will be added in subsequent commits.
Overview:
RTCD "functions" are implemented as either a global function pointer
or a macro (when only one eligible specialization available).
Functions which have RTCD specializations are listed using a simple
DSL identifying the function's base name, its prototype, and the
architecture extensions that specializations are available for.
Advantages over the old system:
- No INVOKE macros. A call to an RTCD function looks like an ordinary
function call.
- No need to pass vtables around.
- If there is only one eligible function to call, the function is
called directly, rather than indirecting through a function pointer.
- Supports the notion of "required" extensions, so in combination with
the above, on x86_64 if the best function available is sse2 or lower
it will be called directly, since all x86_64 platforms implement
sse2.
- Elides all references to functions which will never be called, which
could reduce binary size. For example if sse2 is required and there
are both mmx and sse2 implementations of a certain function, the
code will have no link time references to the mmx code.
- Significantly easier to add a new function, just one file to edit.
Disadvantages:
- Requires global writable data (though this is not a new requirement)
- 1 new generated source file.
Change-Id: Iae6edab65315f79c168485c96872641c5aa09d55
Commit 892e23a5b introduced support for the VP8D_GET_LAST_REF_USED,
but missed the mapping of the control id to the underlying function,
so it was unavailable to applications.
In addition, the underlying function vp8_references_buffer() is
moved from common/postproc.c to decoder/onyxd_if.c as postproc.c is
not built in all configurations.
Change-Id: I426dd254e7e6c4c061b70d729b69a6c384ebbe44
Commit e06c242ba introduced a change to call vp8_find_near_mvs() only
once instead of once per reference frame by observing that the only
effect that the frame had was on the bias applied to the motion
vector. By keeping track of the sign_bias value, the mv to use could
be flip-flopped by multiplying its components by -1.
This behavior was subtley wrong in the case when clamping was applied
to the motion vectors found by vp8_find_near_mvs(). A motion vector
could be in-bounds with one sign bias, but out of bounds after
inverting the sign, or vice versa. The clamping must match that done
by the decoder.
This change modifies vp8_find_near_mvs() to remove the clamping from
that function. The vp8_pick_inter_mode() and vp8_rd_pick_inter_mode()
functions instead track the correctly clamped values for both bias
values, switching between them by simple assignment. The common
clamping and inversion code is in vp8_find_near_mvs_bias()
Change-Id: I17e1a348d1643497eca0be232e2fbe2acf8478e1
A processor with ARMv7 instructions does not
necessarily have NEON dsp extensions. This CL
has the added side effect of allowing the ability
to enable/disable the dsp extensions cleanly.
Change-Id: Ie1e879b8fe131885bc3d4138a0acc9ffe73a36df
Makes the thresholds for the multiframe quality enhancement module
depend on the difference between the base quantizers. Also modifies
the mixing function to weigh the current low quality frame less if
the difference in quantizer is large. With the above modifications
mfqe works well for both scalable patterns as well as low quality
key frames.
Change-Id: If24e94f63f3c292f939eea94f627e7ebfb27cb75
filter in a way such that when there is a single bad frame, the
post-processing is applied not only to just that frame but a
few subsequent frames as well.
Change-Id: Iba5d9896eed77244eb76b4a74692a93f8ecff634