Merged in the high_precision_mv experiment to make it easier
to work on new mv encoding strategies. Also removed
coef_update_probs3().
Change-Id: I82d3b0bb642419fe05dba82528bc9ba010e90924
Set on all 16x16 intra/inter modes
Features:
- Butterfly fDCT/iDCT
- Loop filter does not filter internal edges with 16x16
- Optimize coefficient function
- Update coefficient probability function
- RD
- Entropy stats
- 16x16 is a config option
Have not tested with experiments.
hd: 2.60%
std-hd: 2.43%
yt: 1.32%
derf: 0.60%
Change-Id: I96fb090517c30c5da84bad4fae602c3ec0c58b1c
Allows for swtiching/setting interpolation filters at the MB
level. A frame level flag indicates whether to use a specifc
filter for the entire frame or to signal the interpolation
filter for each MB. When switchable filters are used, the
encoder chooses between 8-tap and 8-tap sharp filters. The
code currently has options to explore other variations as well,
which will be cleaned up subsequently.
One issue with the framework is that encoding is slow. I
tried to do some tricks to speed things up but it is still slow.
Decoding speed should not be affected since the number of
filter taps remain unchanged.
With the current version, we are up 0.5% on derf on average but
some videos city/mobile improve by close to 4 and 2% respectively.
If we did a full-search by turning the SEARCH_BEST_FILTER flag
on, the results are somewhat better.
The framework can be combined with filtered prediction, and I
seek feedback regarding that.
Rebased.
Change-Id: I8f632cb2c111e76284140a2bd480945d6d42b77a
This allows CONFIG_SUPERBLOCKS experiment to almost compile succesfully,
except for the missing pick_sb_modes() function.
Change-Id: Ib2322f2aacdc371e8066f2eb4a8d761c40490b4d
Incorporates mv_ref, mbsplit and second_mv into the adaptive
entropy framework. The mv_ref framework has been modified from
before.
Adds some clean-ups and fixes.
Results with the adaptive entropy experiment are currently up by
+1.93% on derf; +2.33% std-hd and +1.87% yt-hd.
Fixed a nasty intermittent bug.
Change-Id: I4b1ac9f9483b48432597595195bfec05f31d1e39
1. block types
There are only three types of blocks for 8x8 transformed MBs, i.e. Y
block with DC does not exist for 8x8 transformed MBs as all MB using
8x8 transform have 2nd order haar transform. This commit introduced
a new macro BLOCK_TYPES_8X8 to reflect such fact.
2. context counters
This commit also fixed the mixed of context_counters between 4x4 and
8x8 transformed MBs. The mixed use of the counters leads me to think
the existing the context probabilities were not properly generated
from 8x8 transformed MBs.
3. redundant collecting in recoding
The commit also corrected the code that accumulates entropy stats by
making sure stats only collected for final packing, not during the
recode loop
Change-Id: I029f09f8f60bd0c3240cc392ff5c6d05435e322c
Some adjustments to zbin for t8x8.
Changes to rules for sizing forced key frames.
Some extra stats output in tmp.stt.
Approximate gain on YT-hd set 0.5%
There are still issues in sizing key frames and gf/arf frames
when the image is largely static. These in part relate to
problems with cost estimates in the recode loop.
Change-Id: I6f0159dc8a8faeab4115a19c668d442491619a68
This is the first patch to add superblock (32x32) coding
order capabilities. It does not yet do any mode selection
at the SB level, that will follow in a further patch.
This patch encodes rows of SBs rather than
MBs, each SB contains 2x2 MBs.
Two intra prediction modes have been disabled since they
require reconstructed data for the above-right MB which
may not have been encoded yet (e.g. for the bottom right
MB in each SB).
Results on the one test clip I have tried (720p GIPS clip)
suggest that it is somewhere around 0.2dB worse than the
baseline version, so there may be bugs.
It has been tested with no experiments enabled and with
the following 3 experiments enabled:
--enable-enhanced_interp
--enable-high_precision_mv
--enable-sixteenth_subpel_uv
in each case the decode buffer matches the recon buffer
(using "cmp" to compare the dumped/decoded frames).
Note: Testing these experiments individually created
errors.
Some problems were found with other experiments but it
is unclear what state these experiments are in:
--enable-comp_intra_pred
--enable-newentropy
--enable-uvintra
This code has not been extensively tested yet, so there
is every likelihood that further bugs remain. I also
intend to do some code cleanup & refactoring in tandem
with the next patch that adds the 32x32 modes.
Change-Id: I1eba7f740a70b3510df58db53464535ef881b4d9
This is the first patch for refactoring of the code related to
high-precision mv, so that 1/4 and 1/8 pel motion vectors can
co-exist in the same bit-stream by use of a frame level flag.
The current patch works fine for only use of 1/4th and
only use of 1/8th pel mv, but there are some issues with the
mode switching in between. Subsequent patches on this change Id
will fix the remaining issues.
Patch 2: Adds fixes to make sure that multiple mv precisions can
co-exist in the bit-stream. Frame level switching has been tested
to work correctly.
Patch 3: Fixes lines exceeding 80 char
Patch 4:
http://www.corp.google.com/~debargha/vp8_results/enhinterp.html
Results on derf after ssse3 bugfix, compared to everything
enabled but the 8-tap, 1/8-subpel and 1/16-subpel uv. Overall the
gains are about 3% now. Hopefully there are no more bugs lingering.
Apparently the sse3 bug affected the quartel subpel results more than
the eighth pel ones (which is understandabale because one bad predictor
due to the bug, matters less if there are a lot more subpel options
available as in the 1/8 subpel case).
The results in the 4th column correspond to the current settings.
The first two columns correspond to two settings of adaptive switching
of the 1/4 or 1/8 subpel mode based on initial Q estimate. These
do not work as good as just using 1/8 all the time yet.
Change-Id: I3ef392ad338329f4d68a85257a49f2b14f3af472
In summary, this commit encompasses a series of changes in attempt to
improve the 8x8 transform based coding to help overall compression
quality, please refer to the detailed commit history below for what
are the rationale underly the series of changes:
a. A frame level flag to indicate if 8x8 transform is used at all.
b. 8x8 transform is not used for key frames and small image size.
c. On inter coded frame, macroblocks using modes B_PRED, SPLIT_MV
and I8X8_PRED are forced to using 4x4 transform based coding, the
rest uses 8x8 transform based coding.
d. Encoder and decoder has the same assumption on the relationship
between prediction modes and transform size, therefore no signaling
is encoded in bitstream.
e. Mode decision process now calculate the rate and distortion scores
using their respective transforms.
Overall test results:
1. HD set
http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120206.html
(avg psnr: 3.09% glb psnr: 3.22%, ssim: 3.90%)
2. Cif set:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120206.html
(avg psnr: -0.03%, glb psnr: -0.02%, ssim: -0.04%)
It should be noted here, as 8x8 transform coding itself is disabled
for cif size clips, the 0.03% loss is purely from the 1 bit/frame
flag overhead on if 8x8 transform is used or not for the frame.
---patch history for future reference---
Patch 1:
this commit tries to select transform size based on macroblock
prediction mode. If the size of a prediction mode is 16x16, then
the macroblock is forced to use 8x8 transform. If the prediction
mode is B_PRED, SPLITMV or I8X8_PRED, then the macroblock is forced
to use 4x4 transform. Tests on the following HD clips showed mixed
results: (all hd clips only used first 100 frames in the test)
http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8.htmlhttp://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_log.html
while the results are mixed and overall negative, it is interesting to
see 8x8 helped a few of the clips.
Patch 2:
this patch tries to hard-wire selection of transform size based on
prediction modes without using segmentation to signal the transform size.
encoder and decoder both takes the same assumption that all macroblocks
use 8x8 transform except when prediciton mode is B_PRED, I8X8_PRED or
SPLITMV. Test results are as follows:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/cifmodebase8x8_0125.htmlhttp://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_0125log.html
Interestingly, by removing the overhead or coding the segmentation, the
results on this limited HD set have turn positive on average.
Patch 3:
this patch disabled the usage of 8x8 transform on key frames, and kept the
logic from patch 2 for inter frames only. test results on HD set turned
decidedly positive with 8x8 transform enabled on inter frame with 16x16
prediction modes: (avg psnr: .81% glb psnr: .82 ssim: .55%)
http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdintermode8x8_0125.html
results on cif set still negative overall
Patch 4:
continued from last patch, but now in mode decision process, the rate and
distortion estimates are computed based on 8x8 transform results for MBs
with modes associated with 8x8 transform. This patch also fixed a problem
related to segment based eob coding when 8x8 transform is used. The patch
significantly improved the results on HD clips:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd8x8RDintermode.html
(avg psnr: 2.70% glb psnr: 2.76% ssim: 3.34%)
results on cif also improved, though they are still negative compared to
baseline that uses 4x4 transform only:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif8x8RDintermode.html
(avg psnr: -.78% glb psnr: -.86% ssim: -.19%)
Patch 5:
This patch does 3 things:
a. a bunch of decoder bug fixes, encodings and decodings were verified
to have matched recon buffer on a number of encodes on cif size mobile and
hd version of _pedestrian.
b. the patch further improved the rate distortion calculation of MBS that
use 8x8 transform. This provided some further gain on compression.
c. the patch also got the experimental work SEG_LVL_EOB to work with 8x8
transformed macroblock, test results indicates it improves the cif set
but hurt the HD set slightly.
Tests results on HD clips:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120201.html
(avg psnr: 3.19% glb psnr: 3.30% ssim: 3.93%)
Test results on cif clips:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120201.html
(avg psnr: -.47% glb psnr: -.51% ssim: +.28%)
Patch 6:
Added a frame level flag to indicate if 8x8 transform is allowed at all.
temporarily the decision is based on frame size, can be optimized later
one. This get the cif results to basically unchanged, with one bit per
frame overhead on both cif and hd clips.
Patch 8:
Rebase and Merge to head by PGW.
Fixed some suspect 4s that look like hey should be 64s in regard
to segmented EOB. Perhaps #defines would be bette.
Bulit and tested without T8x8 enabled and produces unchanged
output.
Patch 9:
Corrected misalligned code/decode of "txfm_mode" bit.
Limited testing for correct encode and decode with
T8x8 configured on derf clips.
Change-Id: I156e1405d25f81579d579dff8ab9af53944ec49c
changed the token cost for 8x8 transformed macroblock used in trellisquant
from those derived from 4x4 transform coefficient distribution to those
derived from 8x8 transform coefficient distribution. Test results show
this fix help 8x8 transform based compression consistently on cif and hd
sets:
http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_cost8x8only.html
(avg psnr:.14% glb psnr: .17% ssim: .20%)
http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd_cost8x8only.html
(avg psnr:.17% glb psnr: .18% ssim: .58%)
Note: To test the effect of this change, 8x8 transform was forced to be used
only on 16x16 predicted macroblocks on inter frames, the effect would be
bigger had all macroblocks been forcd to use 8x8 transform.
Change-Id: If9b7868b75357c66541f511e5ee78e4d2d4929a4
This commit removed the macro CONFIG_I8X8, which was used to indicate
the 8x8 intra prediction experiment, made the change fully merged in.
Change-Id: Iafa4443781ce6e83f5591c12ba615a0e92ce0ea0
Removal of configure #ifdefs so that segment features
always available. Removal of code supporting old
segment feature method.
Still a good deal of tidying up to do.
Change-Id: I397855f086f8c09ab1fae0a5f65d9e06d2e3e39f
This quite large check in includes the following:
Merge in some code from Ronald (mbgraph.c) that scans a Gf/arf group.
This is used as a basis for a simple segmentation for the normal frames
in a gf/arf group. This code also uses satd functions from Yaowu.
Adds functionality for coding the latest possible position of an EOB for
blocks in the segment. (Currently 0-15 only, hence just for 4x4 dct).
Where the EOB position is 0 this acts like "skip" and the normal coding
of skip at the per mb level is disabled.
Added functions (seg_common.c) for setting and reading segment feature
elements. These may want to be optimized away at some point but while the
mecahnism is in a state of flux they provide a single location for making
changes and keep things a bit cleaner.
This is still proof of concept code. Currently the tested feature set:-
Quantizer,
Loop Filter level,
Reference frame,
Prediction Mode,
EOB end stop.
TBD:-
Add functions for setting and reading the feature data with range
and validity checking.
Handling of signed and unsigned feature data. At the moment all is assumed
to be signed and a sign bit is coded but many cannot be negative.
Correct handling of EOB feature with intra coded blocks.
Testing/trapping of legal/illegal ref frame and mode combinations.
Transform size switch plus merge and test with 8c8 DCT work
Merge and test with Sumans Segmenation coding optimizations
Change-Id: Iee12e83661c7abbd1e0ce6810915eb4ec35e2d8e
Patch 1 to Patch 3 is an initial implementation of 8x8 intra prediction
modes, here are with the following assumptions:
a. 8x8 has 4 prediction modes DC, H, V and TM
b. UV 4x4 block use the same mode as corresponding 8x8 area
c. i8x8 modes are enabled for key frame only for now
Patch 4:
d. removed debug code from previous patches
Patch 5:
e. added stats code to collect entropy stats and further cleaned up
Patch 6:
f. changed mode stats code to collect finer stats of modes
Patch 7:
g. normalized i8x8 modes distribution to total at 256 (8bits).
Patch 8:
h. fixed a bug in decoder and removed debug printf output.
Patch 9:
i. more cleanups to address paul's comment
Patch 10:
j. messy rebase/merges to bring the commit up to date.
Tests on HD clips encoded with all key frame showing consistent gain
on all clips and all metrics:~0.5%(psnr) and 0.6%(ssim):
http://www.corp.google.com/~yaowu/no_crawl/i8x8hd_allkey_fixedq.html
To build and test, configure with:
--enable-experimental --enable-i8x8
Change-Id: I9813fe07ae48cab5fdb5d904bca022514ad01e7f
There were many instances in the code of vp8_coef_tokens and
vp8_coef_tokens-1, which was a preprocessor macro despite the naming
convention. Replace these with MAX_ENTROPY_TOKENS and ENTROPY_NODES,
respectively.
Change-Id: I72c4f6c7634c94e1fa066cd511471e5592c748da
I got this idea from Pascal (Thanks). Before encoding a macroblock,
copy it to a 16x16 buffer, and then read source data from there
instead. This will help keep the source data in cache, and help
with the performance.
Change-Id: Id05f4cb601299150511d59dcba0ae62c49b5b757
Declared the bmi in BLOCKD as a union instead of B_MODE_INFO.
Then removed B_MODE_INFO completely.
Change-Id: Ieb7469899e265892c66f7aeac87b7f2bf38e7a67
vp8_fast_quantize_b_pair_neon function added to quantize
two adjacent blocks at the same time to improve performance.
- Additional 3-6% speedup compared to neon optimized fast
quantizer (Tanya VGA@30fps, 1Mbps stream, cpu-used=-5..-16)
Change-Id: I3fcbf141e5d05e9118c38ca37310458afbabaa4e
This commit restructures the mb activity masking code
to better facilitate experimentation using different metrics
etc. and also allows for adjustment of the zero bin either
for encode only or both the encode and mode selection
stages
It also uses information from the current frame rather than
the previous frame and the default strength has been
reduced.
Change-Id: Id39b19eace37574dc429f25aae810c203709629b
in encodframe.c, quant_shift is set to 0 or 1 in vp8cx_invert_quant
only use 8 bits to store this, instead of 16. will allow saving an
xmm register in an updated version of the regular quantize
Change-Id: Ie88c47fe2aff5af0283dab1147fb2791e4b12f90
MV sad cost error is only used in full-pixel motion search,
which only need full-pixel resolution instead of quarter-pixel
resolution. This change reduced mvsadcost table size, and
removed unneccessary pamameter passing since this table is
constant once it is generated.
Change-Id: I9f931e55f6abc3c99011321f1dfb2f3562e6f6b0
vp8cx_mb_init_quantizer was being called for every mode checked
in vp8_rd_pick_inter_mode. zbin_extra is the only value that
really needs to be recalculated. This calculation is disabled
when using the fast quantizer for mode selection.
This gave a small performance boost (~.5% to 1%).
Note: This needs to be verified with segmentation_enabled.
Change-Id: I62716a870b3c82b4a998bdf95130ff0b02106f1e
Use the fast quantizer for inter mode selection and the
regular quantizer for the rest of the encode for good quality,
speed 1. Both performance and quality were improved. The
quality gains will make up for the quality loss mentioned in
I9dc089007ca08129fb6c11fe7692777ebb8647b0.
Change-Id: Ia90bc9cf326a7c65d60d31fa32f6465ab6984d21
Most of the code that actually uses these matrices indexes them as
if they were a single contiguous array, and coverity produces
reports about the resulting accesses that overflow the static
bounds of the first row.
This is perfectly legal in C, but converting them to actual [16]
arrays should eliminate the report, and removes a good deal of
extraneous indexing and address operators from the code.
Change-Id: Ibda479e2232b3e51f9edf3b355b8640520fdbf23
This uses MB variance to change the RDO weight for mode decision
and quantization.
Activity is normalized against the average for the frame, which is
currently tracked using feed-forward statistics.
This could also be used to adjust the quantizer for the entire
frame, but that requires more extensive rate control changes.
This does not yet attempt to adapt the quantizer within the frame,
but the signaling cost means that will likely only be useful at
very high rates.
Change-Id: I26cd7c755cac3ff33cfe0688b1da50b2b87b9c93
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
Moved partition_bmi and partition_count out of MB_MODE_INFO and
placed into MACROBLOCK. Also reduced the size of other members
of the MB_MODE_INFO struct. For 1080p, the memory was reduced
by 1,209,516 bytes. The decoder performance appeared to improve
by 3% for the clip used.
Note: The main goal for this change is to improve the decoder
performance. The encoder will be revisited at a later date for
further structure cleanup.
Change-Id: I4733621292ee9cc3fffa4046cb3fd4d99bd14613
This replaces the approximate division-by-multiplication in the
quantizer with an exact one that costs just one add and one
shift extra.
The asm versions have not been updated in this patch, and thus
have been disabled, since the new method requires different
multipliers which are not compatible with the old method.
Change-Id: I53ac887af0f969d906e464c88b1f4be69c6b1206
The new fdct lowers the round trip sum squared error for a
4x4 block ~0.12. or ~0.008/pixel. For reference, the old
matrix multiply version has average round trip error 1.46
for a 4x4 block.
Thanks to "derf" for his suggestions and references.
Change-Id: I5559d1e81d333b319404ab16b336b739f87afc79
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d