In order to understand memory layout consider the declaration of the
following structs. The first one is a part of our API:
struct vpx_codec_ctx {
// ...
struct vpx_codec_priv *priv;
};
The second one is defined in vpx_codec_internal.h:
struct vpx_codec_priv {
// ...
};
The following struct is defined 4 times for encoder/decoder VP8/VP9:
struct vpx_codec_alg_priv {
struct vpx_codec_priv base;
// ...
};
Private data allocation for the given ctx:
struct vpx_codec_ctx *ctx = <get>
struct vpx_codec_alg_priv *alg_priv = <allocate>
ctx->priv = (struct vpx_codec_priv *)alg_priv;
The cast works because vpx_codec_alg_priv has a
vpx_codec_priv instance as a first member 'base'.
Change-Id: I10d1afc8c9a7dfda50baade8c7b0296678bdb0d0
We can use one frame context for each layer so that we don't have
to reset the probs every frame. But we can't use prev_mi since we
may drop enhancement layers. So we have to generate a non vp9
compatible bitstream and modify it in the player.
1. We need to code all frames as invisible frame to let prev_mi
not to be used. But in the bitstream we need to code the
show_frame flag to 1 so that the publisher will know it's
supposed to be a visible frame.
2. In the player we need to change the show_frame flag to 0 for
all frames. Then add an one byte frame into the super frame
to tell the decoder which layer we want to show.
Change-Id: I75b7304cf31f0ab952f043e33c034495e88f01f3
This patch fixes slow first pass problem. Mode could only be determined
from the deadline value during frame encode call. Unfortunately, we use
mode value before any encode calls during the first pass encoding (see
set_speed_features() logic). The mode for the first pass must be different
from BEST to make first pass fast.
Change-Id: I562a7d32004ff631695d91c09a44d8a9076fd6b5
We had a very complicated way to initialize cpi->pass from
cfg->g_pass:
switch (cfg->g_pass) {
case VPX_RC_ONE_PASS:
oxcf->mode = ONE_PASS_GOOD;
break;
case VPX_RC_FIRST_PASS:
oxcf->mode = TWO_PASS_FIRST;
break;
case VPX_RC_LAST_PASS:
oxcf->mode = TWO_PASS_SECOND_BEST;
break;
}
cpi->pass = get_pass(oxcf->mode).
Now pass is moved to VP9EncoderConfig and initialization is simple:
switch (cfg->g_pass) {
case VPX_RC_ONE_PASS:
oxcf->pass = 0;
break;
case VPX_RC_FIRST_PASS:
oxcf->pass = 1;
break;
case VPX_RC_LAST_PASS:
oxcf->pass = 2;
break;
}
Change-Id: I8f582203a4575f5e39b071598484a8ad2b72e0d9
Replaced encoder and decoder functions to get a pointer
to a reference frame with a common function, vp9_get_ref_frame,
and simplified it.
Change-Id: Icb206fcce8caace3bfd1db3dbfa318dde79043ee
currently the only way to know if multiple alt-refs are enabled is to
inspect the encoder instance.
this reduces the size of the allocation by 75% when not using multiple
alt-refs
Change-Id: Ie4baa240c2897e64b766c6ad229674884b5a65b6
All changes are for spatial svc only.
1. Enable encoding hidden frames in each layer and use alt reference idex to reference the hidden frame in each layer
2. Use golden reference idx for spatial reference
3. For those layers that don't have hidden frames (caused by lack of frame buffers), reference a hidden frame in lower layers
4. Add "auto-alt-refs" in svc options
Change-Id: Idf27d1fd2fb5f3ffd9e86d2119235e3dad36c178
Prepare for frame parallel decoding, the frame buffers must be
separated from the encoder and decoder structure, while the encoder
and decoder will hold the pointer of the BufferPool.
Change-Id: I172c78f876e41fb5aea11be5f632adadf2a6f466