This commit replaces the vp8_ prefixed subtract function with the
common vpx_subtract_block function. It removes redundant SIMD
optimization codes and unit tests.
Change-Id: I42e086c32c93c6125e452dcaa6ed04337fe028d9
The obj_int_extract code is no longer worth maintaining. It creates
significant issues when adapting for different build systems and no
longer offers as significant of a performance benefit due to
improvements in intrinsics.
Source files will remain until the various third-party builds are updated.
The neon fast quantizer has been moved to intrinsics. The armv6 version
has been removed because so few remaining targets require it.
Compilers and processors have improved significantly since the
pack_tokens code was written. The assembly is no longer faster than the
C code.
pack_tokens were the only optimizations for the armv5te targets so the targets
will be removed after the test infrastructure has been updated.
BUG=710
Change-Id: Ic785b167cd9f95eeff31c7c76b7b736c07fb30eb
Renames all x86_64 specific assembly files to consistently
end in _x86_64.asm. This will be useful for build systems to
handle these files differently.
All new 64-bit specific assembly files should use the new
naming convention.
Change-Id: I36c89584967c82ffc4088b1b5044ac15d2bb7536
Removing all copies of identical vp8_mse2psnr/vp9_mse2psnr functions.
Using vpx_sse_to_psnr() instead in all places.
Change-Id: I15beef9834d43d8fc8a8a7a2d1fc5de3d658fed8
The only reason for the _intrinsics part of the file name was for the
interim period where only one of the functions was redone and the base
file name was the same.
Change-Id: I7851154f1633d48821bee885b1cadb2148e65a23
Pick up VP8 encryption, quantization changes, and some fixes to vpxenc
Conflicts:
test/decode_test_driver.cc
test/decode_test_driver.h
test/encode_test_driver.cc
vp8/vp8cx.mk
vpxdec.c
vpxenc.c
Change-Id: I9fbcc64808ead47e22f1f22501965cc7f0c4791c
Remove dependency of this function on asm_offsets. ssse3/sse4 next.
Change quant_shift calculation so it be done using SIMD. Pre-calculate
as much as possible to simplify EOB selection.
Take advantage of qcoeff being zero'd by tying the if statements
together.
Speed parity with previous implementation with gcc x86_64 linux
Change-Id: Ife97556a1eca3a74b09def1a3d04084974dff1fb
Reduce dependency on offsets file by using intrinsics. Disassembly shows
improvements over previous assembly specifically in register management,
preloading, and {pro,epi}log. Speed change is within margin of error.
Change-Id: I8131b4b4d62bc092407fe847bfaa8f2c0e1384ff
Rather than building an object file directory heirarchy matching the
source tree's layout, rename the object files so that the object
file name contains the path in the source file tree. The intent here
is to allow two files in different parts of the source tree to have
the same name and still not collide when put into an ar archive.
Change-Id: Id627737dc95ffc65b738501215f34a995148c5a2
Creates a merge between the master and experimental branches. Fixes a
number of conflicts in the build system to allow *either* VP8 or VP9
to be built. Specifically either:
$ configure --disable-vp9 $ configure --disable-vp8
--disable-unit-tests
VP9 still exports its symbols and files as VP8, so that will be
resolved in the next commit.
Unit tests are broken in VP9, but this isn't a new issue. They are
fixed upstream on origin/experimental as of this writing, but rebasing
this merge proved difficult, so will tackle that in a second merge
commit.
Change-Id: I2b7d852c18efd58d1ebc621b8041fe0260442c21
Two head files dct.h and dct_x86.h were removed in a previous commit,
this commit removed the build's dependency on the two files.
Change-Id: Idd33712470912d39d42f133dc30b710cab6fa832
* changes:
Add initial keyframe tests
Move all tests to test/ directory
Enable unit tests by default
Build unit tests monolithically
configure: initial support for CXX, CXXFLAGS variables
Rework unit tests to have a single executable rather than many, which
should avoid pollution of the visual studio project namespace, improve
build times, and make it easier to use the gtest test sharding system
when we get these going on the continuous build cluster.
Change-Id: If4c3e5d4b3515522869de6c89455c2a64697cca6
Adds a unit test to the boolcoder that tests encoding
and decoding thousands of different bits, with different
probabilities in different patterns.
Code borrowed from the webp project - and its committers.
Change-Id: Icabbb884d57e666496490c961dd29b246144ab3e
Change If4321cc5 fixed a bug caused by forward declarations not being
kept in sync across C files, resulting in a function call with the
wrong arguments. The commit moves the affected function declarations
into a header file, along with the other symbols from encodeframe.c
that were being sloppily shared.
Change-Id: I76a7b4c66d4fe175f9cbef7e52148655e4bb9ba1
Removes all runtime initialization of global data. This commit is a
squashed version of the following series cherry-picked from master.
This is necessary because of a change that was merged to the tester
that depends on the scaler being moved to the RTCD framework, which
is a worthwhile thing to include in Eider anyway.
- a91b42f02 Makes all global data in entropy.c const
- b35a0db0e Makes all global data in tokenize.c const
- 441cac8ea Makes all mode token tables const
- 5948a0210 Ports vpx_xcaler to new RTCD method
- 317d4244c Makes all mode token tables const part 2
Change-Id: Ifeaea24df2b731e7c509fa6c6ef6891a374afc26
Removes all runtime initialization of global data in tokenize.c.
DCT token and cost tabels are pre-generated.
Second patch in a series to make sure code is reentrant.
Change-Id: Iab48b5fe290129823947b669413101f22a1bcac0
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c