This quite large check in includes the following:
Merge in some code from Ronald (mbgraph.c) that scans a Gf/arf group.
This is used as a basis for a simple segmentation for the normal frames
in a gf/arf group. This code also uses satd functions from Yaowu.
Adds functionality for coding the latest possible position of an EOB for
blocks in the segment. (Currently 0-15 only, hence just for 4x4 dct).
Where the EOB position is 0 this acts like "skip" and the normal coding
of skip at the per mb level is disabled.
Added functions (seg_common.c) for setting and reading segment feature
elements. These may want to be optimized away at some point but while the
mecahnism is in a state of flux they provide a single location for making
changes and keep things a bit cleaner.
This is still proof of concept code. Currently the tested feature set:-
Quantizer,
Loop Filter level,
Reference frame,
Prediction Mode,
EOB end stop.
TBD:-
Add functions for setting and reading the feature data with range
and validity checking.
Handling of signed and unsigned feature data. At the moment all is assumed
to be signed and a sign bit is coded but many cannot be negative.
Correct handling of EOB feature with intra coded blocks.
Testing/trapping of legal/illegal ref frame and mode combinations.
Transform size switch plus merge and test with 8c8 DCT work
Merge and test with Sumans Segmenation coding optimizations
Change-Id: Iee12e83661c7abbd1e0ce6810915eb4ec35e2d8e
Code all the features for one segment (grouped together)
then all for the next etc. etc. rather than grouping the
data by feature.
Change-Id: I2a65193b3a70aca78f92e855e35d8969d857b6dd
This data structure is now [Segment ID][Features]
rather than [Features][Segment_ID]
I propose as a separate modification to make the experimental
bit stream reflect this such that all the features for a segment
are coded together.
Change-Id: I581e4e3ca2033bdbdef3d9300977a8202f55b4fb
Some basic plumbing added for a range of segment level features.
MB_LVL_* changed to SEG_LVL_* to better reflect meaning.
Change-Id: Iac96da36990aa0e40afc0d86e990df337fd0c50b
sharpness was not recalculated in vp8cx_pick_filter_level_fast
remove last_filter_type. all values are calculated, don't need to update
the lfi data when it changes.
always use cm->sharpness_level. the extra indirection was annoying.
don't track last frame_type or sharpness_level manually. frame type
only matters for motion search and sharpness_level is taken care of in
frame_init
move function declarations to their proper header
Change-Id: I7ef037bd4bf8cf5e37d2d36bd03b5e22a2ad91db
This patch collects the twopass specific memebers of VP8_COMP into a
dedicated struct. This is a first step towards isolating the two pass
rate control and aids readability by decorating these variables with
the 'twopass.' namespace. This makes it clear to the reader in what
contexts the variable will be valid, and is a hint that a section of
code might be a good candidate to move to firstpass.c in later
refactoring. There likely will be other rate control modes that need
their own specific data as well.
This notation is probably overly verbose in firstpass.c, so an
alternative would be to access this struct through a pointer like
'rc->' instead of 'cpi->firstpass.' in that file. Feel free to make
a review comment to that effect if you prefer.
Change-Id: I0ab8254647cb4b493a77c16b5d236d0d4a94ca4d
The primary goal is to allow a binary to be built which supports
NEON, but can fall back to non-NEON routines, since some Android
devices do not have NEON, even if they are otherwise ARMv7 (e.g.,
Tegra).
The configure-generated flags HAVE_ARMV7, etc., are used to decide
which versions of each function to build, and when
CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen
at run time.
In order for this to work, the CFLAGS must be set to something
appropriate (e.g., without -mfpu=neon for ARMv7, and with
appropriate -march and -mcpu for even earlier configurations), or
the native C code will not be able to run.
The ASFLAGS must remain set for the most advanced instruction set
required at build time, since the ARM assembler will refuse to emit
them otherwise.
I have not attempted to make any changes to configure to do this
automatically.
Doing so will probably require the addition of new configure options.
Many of the hooks for RTCD on ARM were already there, but a lot of
the code had bit-rotted, and a good deal of the ARM-specific code
is not integrated into the RTCD structs at all.
I did not try to resolve the latter, merely to add the minimal amount
of protection around them to allow RTCD to work.
Those functions that were called based on an ifdef at the calling
site were expanded to check the RTCD flags at that site, but they
should be added to an RTCD struct somewhere in the future.
The functions invoked with global function pointers still are, but
these should be moved into an RTCD struct for thread safety (I
believe every platform currently supported has atomic pointer
stores, but this is not guaranteed).
The encoder's boolhuff functions did not even have _c and armv7
suffixes, and the correct version was resolved at link time.
The token packing functions did have appropriate suffixes, but the
version was selected with a define, with no associated RTCD struct.
However, for both of these, the only armv7 instruction they actually
used was rbit, and this was completely superfluous, so I reworked
them to avoid it.
The only non-ARMv4 instruction remaining in them is clz, which is
ARMv5 (not even ARMv5TE is required).
Considering that there are no ARM-specific configs which are not at
least ARMv5TE, I did not try to detect these at runtime, and simply
enable them for ARMv5 and above.
Finally, the NEON register saving code was completely non-reentrant,
since it saved the registers to a global, static variable.
I moved the storage for this onto the stack.
A single binary built with this code was tested on an ARM11 (ARMv6)
and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder,
and produced identical output, while using the correct accelerated
functions on each.
I did not test on any earlier processors.
Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d