Merge "Rewrite vpx_idct16x16_{10,256}_add_sse2() and add case 38 function"

This commit is contained in:
Linfeng Zhang 2017-08-04 01:16:35 +00:00 committed by Gerrit Code Review
commit e921c7ba8d
4 changed files with 514 additions and 204 deletions

View File

@ -651,6 +651,15 @@ const PartialInvTxfmParam sse2_partial_idct_tests[] = {
make_tuple(
&vpx_highbd_fdct16x16_c, &highbd_wrapper<vpx_highbd_idct16x16_256_add_c>,
&highbd_wrapper<vpx_highbd_idct16x16_256_add_sse2>, TX_16X16, 256, 12, 2),
make_tuple(
&vpx_highbd_fdct16x16_c, &highbd_wrapper<vpx_highbd_idct16x16_38_add_c>,
&highbd_wrapper<vpx_highbd_idct16x16_38_add_sse2>, TX_16X16, 38, 8, 2),
make_tuple(
&vpx_highbd_fdct16x16_c, &highbd_wrapper<vpx_highbd_idct16x16_38_add_c>,
&highbd_wrapper<vpx_highbd_idct16x16_38_add_sse2>, TX_16X16, 38, 10, 2),
make_tuple(
&vpx_highbd_fdct16x16_c, &highbd_wrapper<vpx_highbd_idct16x16_38_add_c>,
&highbd_wrapper<vpx_highbd_idct16x16_38_add_sse2>, TX_16X16, 38, 12, 2),
make_tuple(
&vpx_highbd_fdct16x16_c, &highbd_wrapper<vpx_highbd_idct16x16_10_add_c>,
&highbd_wrapper<vpx_highbd_idct16x16_10_add_sse2>, TX_16X16, 10, 8, 2),

View File

@ -658,7 +658,6 @@ if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
specialize qw/vpx_highbd_idct8x8_12_add neon sse2 sse4_1/;
specialize qw/vpx_highbd_idct16x16_256_add neon sse2/;
specialize qw/vpx_highbd_idct16x16_38_add neon sse2/;
$vpx_highbd_idct16x16_38_add_sse2=vpx_highbd_idct16x16_256_add_sse2;
specialize qw/vpx_highbd_idct16x16_10_add neon sse2/;
specialize qw/vpx_highbd_idct32x32_1024_add neon/;
specialize qw/vpx_highbd_idct32x32_135_add neon/;

View File

@ -8,237 +8,516 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <emmintrin.h> // SSE2
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h"
#include "vpx_dsp/x86/inv_txfm_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
static INLINE __m128i load_pack_8_32bit(const tran_low_t *const input) {
const __m128i t0 = _mm_load_si128((const __m128i *)(input + 0));
const __m128i t1 = _mm_load_si128((const __m128i *)(input + 4));
return _mm_packs_epi32(t0, t1);
}
static INLINE void highbd_write_buffer_8x1(uint16_t *dest, const __m128i in,
const int bd) {
const __m128i final_rounding = _mm_set1_epi16(1 << 5);
__m128i out;
out = _mm_adds_epi16(in, final_rounding);
out = _mm_srai_epi16(out, 6);
recon_and_store_8_kernel(out, &dest, 0, bd);
}
static INLINE void recon_and_store_4_kernel(const __m128i in,
uint16_t *const dest,
const int bd) {
__m128i d;
d = _mm_loadl_epi64((const __m128i *)dest);
d = add_clamp(d, in, bd);
_mm_storel_epi64((__m128i *)dest, d);
}
static INLINE void highbd_write_buffer_4x1(uint16_t *const dest,
const __m128i in, const int bd) {
const __m128i final_rounding = _mm_set1_epi32(1 << 5);
__m128i out;
out = _mm_add_epi32(in, final_rounding);
out = _mm_srai_epi32(out, 6);
out = _mm_packs_epi32(out, out);
recon_and_store_4_kernel(out, dest, bd);
}
static INLINE void highbd_idct16_4col_stage5(const __m128i *const in,
__m128i *const out) {
__m128i temp1[2], temp2, sign[2];
// stage 5
out[0] = _mm_add_epi32(in[0], in[3]);
out[1] = _mm_add_epi32(in[1], in[2]);
out[2] = _mm_sub_epi32(in[1], in[2]);
out[3] = _mm_sub_epi32(in[0], in[3]);
temp2 = _mm_sub_epi32(in[6], in[5]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[5] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2 = _mm_add_epi32(in[6], in[5]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[6] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
out[8] = _mm_add_epi32(in[8], in[11]);
out[9] = _mm_add_epi32(in[9], in[10]);
out[10] = _mm_sub_epi32(in[9], in[10]);
out[11] = _mm_sub_epi32(in[8], in[11]);
out[12] = _mm_sub_epi32(in[15], in[12]);
out[13] = _mm_sub_epi32(in[14], in[13]);
out[14] = _mm_add_epi32(in[14], in[13]);
out[15] = _mm_add_epi32(in[15], in[12]);
}
static INLINE void highbd_idct16_4col_stage6(const __m128i *const in,
__m128i *const out) {
__m128i temp1[2], temp2, sign[2];
out[0] = _mm_add_epi32(in[0], in[7]);
out[1] = _mm_add_epi32(in[1], in[6]);
out[2] = _mm_add_epi32(in[2], in[5]);
out[3] = _mm_add_epi32(in[3], in[4]);
out[4] = _mm_sub_epi32(in[3], in[4]);
out[5] = _mm_sub_epi32(in[2], in[5]);
out[6] = _mm_sub_epi32(in[1], in[6]);
out[7] = _mm_sub_epi32(in[0], in[7]);
out[8] = in[8];
out[9] = in[9];
temp2 = _mm_sub_epi32(in[13], in[10]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[10] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2 = _mm_add_epi32(in[13], in[10]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[13] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2 = _mm_sub_epi32(in[12], in[11]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[11] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2 = _mm_add_epi32(in[12], in[11]);
abs_extend_64bit_sse2(temp2, temp1, sign);
out[12] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
out[14] = in[14];
out[15] = in[15];
}
static INLINE void highbd_idct16_4col_stage7(const __m128i *const in,
__m128i *const out) {
out[0] = _mm_add_epi32(in[0], in[15]);
out[1] = _mm_add_epi32(in[1], in[14]);
out[2] = _mm_add_epi32(in[2], in[13]);
out[3] = _mm_add_epi32(in[3], in[12]);
out[4] = _mm_add_epi32(in[4], in[11]);
out[5] = _mm_add_epi32(in[5], in[10]);
out[6] = _mm_add_epi32(in[6], in[9]);
out[7] = _mm_add_epi32(in[7], in[8]);
out[8] = _mm_sub_epi32(in[7], in[8]);
out[9] = _mm_sub_epi32(in[6], in[9]);
out[10] = _mm_sub_epi32(in[5], in[10]);
out[11] = _mm_sub_epi32(in[4], in[11]);
out[12] = _mm_sub_epi32(in[3], in[12]);
out[13] = _mm_sub_epi32(in[2], in[13]);
out[14] = _mm_sub_epi32(in[1], in[14]);
out[15] = _mm_sub_epi32(in[0], in[15]);
}
static INLINE void highbd_idct16_4col(__m128i *const io /*io[16]*/) {
__m128i step1[16], step2[16];
__m128i temp1[4], temp2, sign[2];
// stage 2
highbd_multiplication_and_add_sse2(io[1], io[15], (int)cospi_30_64,
(int)cospi_2_64, &step2[8], &step2[15]);
highbd_multiplication_and_add_sse2(io[9], io[7], (int)cospi_14_64,
(int)cospi_18_64, &step2[9], &step2[14]);
highbd_multiplication_and_add_sse2(io[5], io[11], (int)cospi_22_64,
(int)cospi_10_64, &step2[10], &step2[13]);
highbd_multiplication_and_add_sse2(io[13], io[3], (int)cospi_6_64,
(int)cospi_26_64, &step2[11], &step2[12]);
// stage 3
highbd_multiplication_and_add_sse2(io[2], io[14], (int)cospi_28_64,
(int)cospi_4_64, &step1[4], &step1[7]);
highbd_multiplication_and_add_sse2(io[10], io[6], (int)cospi_12_64,
(int)cospi_20_64, &step1[5], &step1[6]);
step1[8] = _mm_add_epi32(step2[8], step2[9]);
step1[9] = _mm_sub_epi32(step2[8], step2[9]);
step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10]
step1[11] = _mm_add_epi32(step2[10], step2[11]);
step1[12] = _mm_add_epi32(step2[13], step2[12]);
step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13]
step1[14] = _mm_sub_epi32(step2[15], step2[14]);
step1[15] = _mm_add_epi32(step2[15], step2[14]);
// stage 4
temp2 = _mm_add_epi32(io[0], io[8]);
abs_extend_64bit_sse2(temp2, temp1, sign);
step2[0] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2 = _mm_sub_epi32(io[0], io[8]);
abs_extend_64bit_sse2(temp2, temp1, sign);
step2[1] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
highbd_multiplication_and_add_sse2(io[4], io[12], (int)cospi_24_64,
(int)cospi_8_64, &step2[2], &step2[3]);
highbd_multiplication_and_add_sse2(step1[14], step1[9], (int)cospi_24_64,
(int)cospi_8_64, &step2[9], &step2[14]);
highbd_multiplication_and_add_sse2(step1[10], step1[13], (int)cospi_8_64,
(int)cospi_24_64, &step2[13], &step2[10]);
step2[5] = _mm_sub_epi32(step1[4], step1[5]);
step1[4] = _mm_add_epi32(step1[4], step1[5]);
step2[6] = _mm_sub_epi32(step1[7], step1[6]);
step1[7] = _mm_add_epi32(step1[7], step1[6]);
step2[8] = step1[8];
step2[11] = step1[11];
step2[12] = step1[12];
step2[15] = step1[15];
highbd_idct16_4col_stage5(step2, step1);
highbd_idct16_4col_stage6(step1, step2);
highbd_idct16_4col_stage7(step2, io);
}
static INLINE void highbd_idct16x16_38_4col(__m128i *const io /*io[16]*/) {
__m128i step1[16], step2[16];
__m128i temp1[2], sign[2];
// stage 2
highbd_multiplication_sse2(io[1], (int)cospi_30_64, (int)cospi_2_64,
&step2[8], &step2[15]);
highbd_multiplication_neg_sse2(io[7], (int)cospi_14_64, (int)cospi_18_64,
&step2[9], &step2[14]);
highbd_multiplication_sse2(io[5], (int)cospi_22_64, (int)cospi_10_64,
&step2[10], &step2[13]);
highbd_multiplication_neg_sse2(io[3], (int)cospi_6_64, (int)cospi_26_64,
&step2[11], &step2[12]);
// stage 3
highbd_multiplication_sse2(io[2], (int)cospi_28_64, (int)cospi_4_64,
&step1[4], &step1[7]);
highbd_multiplication_neg_sse2(io[6], (int)cospi_12_64, (int)cospi_20_64,
&step1[5], &step1[6]);
step1[8] = _mm_add_epi32(step2[8], step2[9]);
step1[9] = _mm_sub_epi32(step2[8], step2[9]);
step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10]
step1[11] = _mm_add_epi32(step2[10], step2[11]);
step1[12] = _mm_add_epi32(step2[13], step2[12]);
step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13]
step1[14] = _mm_sub_epi32(step2[15], step2[14]);
step1[15] = _mm_add_epi32(step2[15], step2[14]);
// stage 4
abs_extend_64bit_sse2(io[0], temp1, sign);
step2[0] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
step2[1] = step2[0];
highbd_multiplication_sse2(io[4], (int)cospi_24_64, (int)cospi_8_64,
&step2[2], &step2[3]);
highbd_multiplication_and_add_sse2(step1[14], step1[9], (int)cospi_24_64,
(int)cospi_8_64, &step2[9], &step2[14]);
highbd_multiplication_and_add_sse2(step1[10], step1[13], (int)cospi_8_64,
(int)cospi_24_64, &step2[13], &step2[10]);
step2[5] = _mm_sub_epi32(step1[4], step1[5]);
step1[4] = _mm_add_epi32(step1[4], step1[5]);
step2[6] = _mm_sub_epi32(step1[7], step1[6]);
step1[7] = _mm_add_epi32(step1[7], step1[6]);
step2[8] = step1[8];
step2[11] = step1[11];
step2[12] = step1[12];
step2[15] = step1[15];
highbd_idct16_4col_stage5(step2, step1);
highbd_idct16_4col_stage6(step1, step2);
highbd_idct16_4col_stage7(step2, io);
}
static INLINE void highbd_idct16x16_10_4col(__m128i *const io /*io[16]*/) {
__m128i step1[16], step2[16];
__m128i temp[2], sign[2];
// stage 2
highbd_multiplication_sse2(io[1], (int)cospi_30_64, (int)cospi_2_64,
&step2[8], &step2[15]);
highbd_multiplication_neg_sse2(io[3], (int)cospi_6_64, (int)cospi_26_64,
&step2[11], &step2[12]);
// stage 3
highbd_multiplication_sse2(io[2], (int)cospi_28_64, (int)cospi_4_64,
&step1[4], &step1[7]);
step1[8] = step2[8];
step1[9] = step2[8];
step1[10] =
_mm_sub_epi32(_mm_setzero_si128(), step2[11]); // step1[10] = -step1[10]
step1[11] = step2[11];
step1[12] = step2[12];
step1[13] =
_mm_sub_epi32(_mm_setzero_si128(), step2[12]); // step1[13] = -step1[13]
step1[14] = step2[15];
step1[15] = step2[15];
// stage 4
abs_extend_64bit_sse2(io[0], temp, sign);
step2[0] = multiplication_round_shift_sse2(temp, sign, (int)cospi_16_64);
step2[1] = step2[0];
step2[2] = _mm_setzero_si128();
step2[3] = _mm_setzero_si128();
highbd_multiplication_and_add_sse2(step1[14], step1[9], (int)cospi_24_64,
(int)cospi_8_64, &step2[9], &step2[14]);
highbd_multiplication_and_add_sse2(step1[10], step1[13], (int)cospi_8_64,
(int)cospi_24_64, &step2[13], &step2[10]);
step2[5] = step1[4];
step2[6] = step1[7];
step2[8] = step1[8];
step2[11] = step1[11];
step2[12] = step1[12];
step2[15] = step1[15];
highbd_idct16_4col_stage5(step2, step1);
highbd_idct16_4col_stage6(step1, step2);
highbd_idct16_4col_stage7(step2, io);
}
void vpx_highbd_idct16x16_256_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
int i, j, test;
__m128i inptr[32];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i rounding = _mm_set1_epi16(32);
const __m128i max = _mm_set1_epi16(3155);
const __m128i min = _mm_set1_epi16(-3155);
int optimised_cols = 0;
int i;
__m128i out[16], *in;
// Load input into __m128i & pack to 16 bits
for (i = 0; i < 16; i++) {
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 4));
inptr[i] = _mm_packs_epi32(temp1, temp2);
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 8));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 12));
inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
}
if (bd == 8) {
__m128i l[16], r[16];
// Find the min & max for the row transform
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 32; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
in = l;
for (i = 0; i < 2; i++) {
in[0] = load_pack_8_32bit(input + 0 * 16);
in[1] = load_pack_8_32bit(input + 1 * 16);
in[2] = load_pack_8_32bit(input + 2 * 16);
in[3] = load_pack_8_32bit(input + 3 * 16);
in[4] = load_pack_8_32bit(input + 4 * 16);
in[5] = load_pack_8_32bit(input + 5 * 16);
in[6] = load_pack_8_32bit(input + 6 * 16);
in[7] = load_pack_8_32bit(input + 7 * 16);
transpose_16bit_8x8(in, in);
if (!test) {
// Do the row transform
idct16_sse2(inptr, inptr + 16);
// Find the min & max for the column transform
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 32; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
in[8] = load_pack_8_32bit(input + 0 * 16 + 8);
in[9] = load_pack_8_32bit(input + 1 * 16 + 8);
in[10] = load_pack_8_32bit(input + 2 * 16 + 8);
in[11] = load_pack_8_32bit(input + 3 * 16 + 8);
in[12] = load_pack_8_32bit(input + 4 * 16 + 8);
in[13] = load_pack_8_32bit(input + 5 * 16 + 8);
in[14] = load_pack_8_32bit(input + 6 * 16 + 8);
in[15] = load_pack_8_32bit(input + 7 * 16 + 8);
transpose_16bit_8x8(in + 8, in + 8);
idct16_8col(in);
in = r;
input += 128;
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (test) {
transpose_16bit_16x16(inptr, inptr + 16);
for (i = 0; i < 16; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpacklo_epi16(inptr[i], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 1)), temp2);
sign_bits = _mm_cmplt_epi16(inptr[i + 16], zero);
temp1 = _mm_unpacklo_epi16(inptr[i + 16], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i + 16], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 2)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 3)), temp2);
}
} else {
// Set to use the optimised transform for the column
optimised_cols = 1;
}
} else {
// Run the un-optimised row transform
for (i = 0; i < 16; ++i) {
vpx_highbd_idct16_c(input, outptr, bd);
input += 16;
outptr += 16;
}
}
for (i = 0; i < 2; i++) {
int j;
transpose_16bit_8x8(l + i * 8, out);
transpose_16bit_8x8(r + i * 8, out + 8);
idct16_8col(out);
if (optimised_cols) {
idct16_sse2(inptr, inptr + 16);
// Final round & shift and Reconstruction and Store
{
__m128i d[2];
for (i = 0; i < 16; i++) {
inptr[i] = _mm_add_epi16(inptr[i], rounding);
inptr[i + 16] = _mm_add_epi16(inptr[i + 16], rounding);
d[0] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
d[1] = _mm_loadu_si128((const __m128i *)(dest + stride * i + 8));
inptr[i] = _mm_srai_epi16(inptr[i], 6);
inptr[i + 16] = _mm_srai_epi16(inptr[i + 16], 6);
d[0] = add_clamp(d[0], inptr[i], bd);
d[1] = add_clamp(d[1], inptr[i + 16], bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[0]);
_mm_storeu_si128((__m128i *)(dest + stride * i + 8), d[1]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[16], temp_out[16];
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
vpx_highbd_idct16_c(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
highbd_write_buffer_8x1(dest + j * stride, out[j], bd);
}
dest += 8;
}
} else {
__m128i all[4][16];
for (i = 0; i < 4; i++) {
in = all[i];
in[0] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 0));
in[1] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 4));
in[2] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 0));
in[3] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 4));
in[4] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 0));
in[5] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 4));
in[6] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 0));
in[7] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 4));
transpose_32bit_8x4(in, in);
in[8] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 8));
in[9] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 12));
in[10] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 8));
in[11] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 12));
in[12] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 8));
in[13] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 12));
in[14] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 8));
in[15] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 12));
transpose_32bit_8x4(in + 8, in + 8);
highbd_idct16_4col(in);
input += 4 * 16;
}
for (i = 0; i < 4; i++) {
int j;
out[0] = all[0][4 * i + 0];
out[1] = all[1][4 * i + 0];
out[2] = all[0][4 * i + 1];
out[3] = all[1][4 * i + 1];
out[4] = all[0][4 * i + 2];
out[5] = all[1][4 * i + 2];
out[6] = all[0][4 * i + 3];
out[7] = all[1][4 * i + 3];
transpose_32bit_8x4(out, out);
out[8] = all[2][4 * i + 0];
out[9] = all[3][4 * i + 0];
out[10] = all[2][4 * i + 1];
out[11] = all[3][4 * i + 1];
out[12] = all[2][4 * i + 2];
out[13] = all[3][4 * i + 2];
out[14] = all[2][4 * i + 3];
out[15] = all[3][4 * i + 3];
transpose_32bit_8x4(out + 8, out + 8);
highbd_idct16_4col(out);
for (j = 0; j < 16; ++j) {
highbd_write_buffer_4x1(dest + j * stride, out[j], bd);
}
dest += 4;
}
}
}
void vpx_highbd_idct16x16_38_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
int i;
__m128i out[16];
if (bd == 8) {
__m128i in[16];
in[0] = load_pack_8_32bit(input + 0 * 16);
in[1] = load_pack_8_32bit(input + 1 * 16);
in[2] = load_pack_8_32bit(input + 2 * 16);
in[3] = load_pack_8_32bit(input + 3 * 16);
in[4] = load_pack_8_32bit(input + 4 * 16);
in[5] = load_pack_8_32bit(input + 5 * 16);
in[6] = load_pack_8_32bit(input + 6 * 16);
in[7] = load_pack_8_32bit(input + 7 * 16);
transpose_16bit_8x8(in, in);
in[8] = _mm_setzero_si128();
in[9] = _mm_setzero_si128();
in[10] = _mm_setzero_si128();
in[11] = _mm_setzero_si128();
in[12] = _mm_setzero_si128();
in[13] = _mm_setzero_si128();
in[14] = _mm_setzero_si128();
in[15] = _mm_setzero_si128();
idct16_8col(in);
for (i = 0; i < 2; i++) {
int j;
transpose_16bit_8x8(in + i * 8, out);
out[8] = _mm_setzero_si128();
out[9] = _mm_setzero_si128();
out[10] = _mm_setzero_si128();
out[11] = _mm_setzero_si128();
out[12] = _mm_setzero_si128();
out[13] = _mm_setzero_si128();
out[14] = _mm_setzero_si128();
out[15] = _mm_setzero_si128();
idct16_8col(out);
for (j = 0; j < 16; ++j) {
highbd_write_buffer_8x1(dest + j * stride, out[j], bd);
}
dest += 8;
}
} else {
__m128i all[2][16], *in;
for (i = 0; i < 2; i++) {
in = all[i];
in[0] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 0));
in[1] = _mm_load_si128((const __m128i *)(input + 0 * 16 + 4));
in[2] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 0));
in[3] = _mm_load_si128((const __m128i *)(input + 1 * 16 + 4));
in[4] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 0));
in[5] = _mm_load_si128((const __m128i *)(input + 2 * 16 + 4));
in[6] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 0));
in[7] = _mm_load_si128((const __m128i *)(input + 3 * 16 + 4));
transpose_32bit_8x4(in, in);
highbd_idct16x16_38_4col(in);
input += 4 * 16;
}
for (i = 0; i < 4; i++) {
int j;
out[0] = all[0][4 * i + 0];
out[1] = all[1][4 * i + 0];
out[2] = all[0][4 * i + 1];
out[3] = all[1][4 * i + 1];
out[4] = all[0][4 * i + 2];
out[5] = all[1][4 * i + 2];
out[6] = all[0][4 * i + 3];
out[7] = all[1][4 * i + 3];
transpose_32bit_8x4(out, out);
highbd_idct16x16_38_4col(out);
for (j = 0; j < 16; ++j) {
highbd_write_buffer_4x1(dest + j * stride, out[j], bd);
}
dest += 4;
}
}
}
void vpx_highbd_idct16x16_10_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
tran_low_t out[16 * 16] = { 0 };
tran_low_t *outptr = out;
int i, j, test;
__m128i inptr[32];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i rounding = _mm_set1_epi16(32);
const __m128i max = _mm_set1_epi16(3155);
const __m128i min = _mm_set1_epi16(-3155);
int optimised_cols = 0;
int i;
__m128i out[16];
// Load input into __m128i & pack to 16 bits
for (i = 0; i < 16; i++) {
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 4));
inptr[i] = _mm_packs_epi32(temp1, temp2);
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 8));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 12));
inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
}
if (bd == 8) {
__m128i in[16], l[16];
// Find the min & max for the row transform
// Since all non-zero dct coefficients are in upper-left 4x4 area,
// we only need to consider first 4 rows here.
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 4; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
in[0] = load_pack_8_32bit(input + 0 * 16);
in[1] = load_pack_8_32bit(input + 1 * 16);
in[2] = load_pack_8_32bit(input + 2 * 16);
in[3] = load_pack_8_32bit(input + 3 * 16);
if (!test) {
// Do the row transform (N.B. This transposes inptr)
idct16_sse2(inptr, inptr + 16);
idct16x16_10_pass1(in, l);
// Find the min & max for the column transform
// N.B. Only first 4 cols contain non-zero coeffs
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 16; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
for (i = 0; i < 2; i++) {
int j;
idct16x16_10_pass2(l + 8 * i, in);
if (test) {
// Use fact only first 4 rows contain non-zero coeffs
transpose_16bit_8x8(inptr, inptr);
transpose_16bit_8x8(inptr + 8, inptr + 16);
for (i = 0; i < 4; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpacklo_epi16(inptr[i], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 1)), temp2);
sign_bits = _mm_cmplt_epi16(inptr[i + 16], zero);
temp1 = _mm_unpacklo_epi16(inptr[i + 16], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i + 16], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 2)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 3)), temp2);
}
} else {
// Set to use the optimised transform for the column
optimised_cols = 1;
}
} else {
// Run the un-optimised row transform
for (i = 0; i < 4; ++i) {
vpx_highbd_idct16_c(input, outptr, bd);
input += 16;
outptr += 16;
}
}
if (optimised_cols) {
idct16_sse2(inptr, inptr + 16);
// Final round & shift and Reconstruction and Store
{
__m128i d[2];
for (i = 0; i < 16; i++) {
inptr[i] = _mm_add_epi16(inptr[i], rounding);
inptr[i + 16] = _mm_add_epi16(inptr[i + 16], rounding);
d[0] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
d[1] = _mm_loadu_si128((const __m128i *)(dest + stride * i + 8));
inptr[i] = _mm_srai_epi16(inptr[i], 6);
inptr[i + 16] = _mm_srai_epi16(inptr[i + 16], 6);
d[0] = add_clamp(d[0], inptr[i], bd);
d[1] = add_clamp(d[1], inptr[i + 16], bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[0]);
_mm_storeu_si128((__m128i *)(dest + stride * i + 8), d[1]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[16], temp_out[16];
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
vpx_highbd_idct16_c(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
highbd_write_buffer_8x1(dest + j * stride, in[j], bd);
}
dest += 8;
}
} else {
__m128i all[2][16], *in;
for (i = 0; i < 2; i++) {
in = all[i];
in[0] = _mm_load_si128((const __m128i *)(input + 0 * 16));
in[1] = _mm_load_si128((const __m128i *)(input + 1 * 16));
in[2] = _mm_load_si128((const __m128i *)(input + 2 * 16));
in[3] = _mm_load_si128((const __m128i *)(input + 3 * 16));
transpose_32bit_4x4(in, in);
highbd_idct16x16_10_4col(in);
input += 4 * 16;
}
for (i = 0; i < 4; i++) {
int j;
transpose_32bit_4x4(&all[0][4 * i], out);
highbd_idct16x16_10_4col(out);
for (j = 0; j < 16; ++j) {
highbd_write_buffer_4x1(dest + j * stride, out[j], bd);
}
dest += 4;
}
}
}

View File

@ -115,7 +115,7 @@ static INLINE void highbd_multiplication_and_add_sse2(
__m128i *const out0, __m128i *const out1) {
const __m128i pair_c0 = pair_set_epi32(c0 << 2, 0);
const __m128i pair_c1 = pair_set_epi32(c1 << 2, 0);
__m128i temp1[4], temp2[4], sign1[4], sign2[4];
__m128i temp1[4], temp2[4], sign1[2], sign2[2];
abs_extend_64bit_sse2(in0, temp1, sign1);
abs_extend_64bit_sse2(in1, temp2, sign2);
@ -139,6 +139,29 @@ static INLINE void highbd_multiplication_and_add_sse2(
*out1 = pack_4(temp2[0], temp2[1]);
}
// Note: c0 and c1 must be non negative.
static INLINE void highbd_multiplication_sse2(const __m128i in, const int c0,
const int c1, __m128i *const out0,
__m128i *const out1) {
__m128i temp[2], sign[2];
abs_extend_64bit_sse2(in, temp, sign);
*out0 = multiplication_round_shift_sse2(temp, sign, c0);
*out1 = multiplication_round_shift_sse2(temp, sign, c1);
}
// Note: c0 and c1 must be non negative.
static INLINE void highbd_multiplication_neg_sse2(const __m128i in,
const int c0, const int c1,
__m128i *const out0,
__m128i *const out1) {
__m128i temp[2], sign[2];
abs_extend_64bit_sse2(in, temp, sign);
*out0 = multiplication_neg_round_shift_sse2(temp, sign, c1);
*out1 = multiplication_round_shift_sse2(temp, sign, c0);
}
static INLINE void highbd_idct8_stage4(const __m128i *const in,
__m128i *const out) {
out[0] = _mm_add_epi32(in[0], in[7]);