Merge "Adding model_rd_for_sb function." into experimental

This commit is contained in:
Dmitry Kovalev 2013-05-06 17:17:18 -07:00 committed by Gerrit Code Review
commit e536e17881

View File

@ -3089,6 +3089,93 @@ static enum BlockSize y_bsizet_to_block_size(BLOCK_SIZE_TYPE bs) {
}
}
static enum BlockSize get_block_size(int bw, int bh) {
#if CONFIG_SB8X8
if (bw == 4 && bh == 4)
return BLOCK_4X4;
if (bw == 4 && bh == 8)
return BLOCK_4X8;
if (bw == 8 && bh == 4)
return BLOCK_8X4;
if (bw == 8 && bh == 8)
return BLOCK_8X8;
if (bw == 8 && bh == 16)
return BLOCK_8X16;
if (bw == 16 && bh == 8)
return BLOCK_16X8;
#else
if (bw == 16 && bh == 8)
return BLOCK_16X8;
if (bw == 8 && bh == 16)
return BLOCK_8X16;
if (bw == 8 && bh == 8)
return BLOCK_8X8;
if (bw == 4 && bh == 4)
return BLOCK_4X4;
#endif
if (bw == 16 && bh == 16)
return BLOCK_16X16;
if (bw == 32 && bh == 32)
return BLOCK_32X32;
if (bw == 32 && bh == 16)
return BLOCK_32X16;
if (bw == 16 && bh == 32)
return BLOCK_16X32;
if (bw == 64 && bh == 32)
return BLOCK_64X32;
if (bw == 32 && bh == 64)
return BLOCK_32X64;
if (bw == 64 && bh == 64)
return BLOCK_64X64;
assert(0);
return -1;
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse, var;
int i, rate_sum = 0, dist_sum = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const int bwl = b_width_log2(bsize) - pd->subsampling_x;
const int bhl = b_height_log2(bsize) - pd->subsampling_y;
const enum BlockSize bs = get_block_size(4 << bwl, 4 << bhl);
int rate, dist;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
model_rd_from_var_lapndz(var, 16 << (bwl + bhl),
pd->dequant[1] >> 3, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*out_rate_sum = rate_sum;
*out_dist_sum = dist_sum;
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mdcounts[4], int64_t txfm_cache[],
@ -3283,76 +3370,40 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
if (1) {
int switchable_filter_index, newbest;
int tmp_rate_y_i = 0, tmp_rate_u_i = 0, tmp_rate_v_i = 0;
int tmp_dist_y_i = 0, tmp_dist_u_i = 0, tmp_dist_v_i = 0;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int i, newbest;
int tmp_rate_sum = 0, tmp_dist_sum = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
int rs = 0;
mbmi->interp_filter = vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i];
const int is_intpel_interp = intpel_mv &&
vp9_is_interpolating_filter[filter];
mbmi->interp_filter = filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
if (cm->mcomp_filter_type == SWITCHABLE) {
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
rs = SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
if (interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y_i + tmp_rate_u_i + tmp_rate_v_i,
tmp_dist_y_i + tmp_dist_u_i + tmp_dist_v_i);
if (interpolating_intpel_seen && is_intpel_interp) {
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_sum, tmp_dist_sum);
} else {
unsigned int sse, var;
int tmp_rate_y, tmp_rate_u, tmp_rate_v;
int tmp_dist_y, tmp_dist_u, tmp_dist_v;
int rate_sum = 0, dist_sum = 0;
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
var = cpi->fn_ptr[block_size].vf(x->plane[0].src.buf,
x->plane[0].src.stride,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
&sse);
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
model_rd_from_var_lapndz(var, MI_SIZE * bw * MI_SIZE * bh,
xd->plane[0].dequant[1] >> 3,
&tmp_rate_y, &tmp_dist_y);
var = cpi->fn_ptr[uv_block_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, MI_UV_SIZE * bw * MI_UV_SIZE * bh,
xd->plane[1].dequant[1] >> 3,
&tmp_rate_u, &tmp_dist_u);
var = cpi->fn_ptr[uv_block_size].vf(x->plane[2].src.buf,
x->plane[1].src.stride,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, MI_UV_SIZE * bw * MI_UV_SIZE * bh,
xd->plane[2].dequant[1] >> 3,
&tmp_rate_v, &tmp_dist_v);
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y + tmp_rate_u + tmp_rate_v,
tmp_dist_y + tmp_dist_u + tmp_dist_v);
if (!interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
tmp_rate_y_i = tmp_rate_y;
tmp_rate_u_i = tmp_rate_u;
tmp_rate_v_i = tmp_rate_v;
tmp_dist_y_i = tmp_dist_y;
tmp_dist_u_i = tmp_dist_u;
tmp_dist_v_i = tmp_dist_v;
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_sum, dist_sum);
if (!interpolating_intpel_seen && is_intpel_interp) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
newbest = (switchable_filter_index == 0 || rd < best_rd);
newbest = i == 0 || rd < best_rd;
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
@ -3367,21 +3418,18 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
sizeof(unsigned char) * MI_UV_SIZE * bw);
for (i = 0; i < MI_UV_SIZE * bh; ++i)
vpx_memcpy(tmp_vbuf + i * MI_UV_SIZE * bw,
xd->plane[2].dst.buf + i * xd->plane[1].dst.stride,
xd->plane[2].dst.buf + i * xd->plane[2].dst.stride,
sizeof(unsigned char) * MI_UV_SIZE * bw);
pred_exists = 1;
}
interpolating_intpel_seen |=
intpel_mv && vp9_is_interpolating_filter[mbmi->interp_filter];
interpolating_intpel_seen |= is_intpel_interp;
}
}
// Set the appripriate filter
if (cm->mcomp_filter_type != SWITCHABLE)
mbmi->interp_filter = cm->mcomp_filter_type;
else
mbmi->interp_filter = *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
cm->mcomp_filter_type : *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (pred_exists) {
// FIXME(rbultje): mb code still predicts into xd->predictor
@ -3394,7 +3442,7 @@ static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
tmp_ubuf + i * bw * MI_UV_SIZE,
sizeof(unsigned char) * bw * MI_UV_SIZE);
for (i = 0; i < bh * MI_UV_SIZE; ++i)
vpx_memcpy(xd->plane[2].dst.buf + i * xd->plane[1].dst.stride,
vpx_memcpy(xd->plane[2].dst.buf + i * xd->plane[2].dst.stride,
tmp_vbuf + i * bw * MI_UV_SIZE,
sizeof(unsigned char) * bw * MI_UV_SIZE);
} else {