block error avx2: rename variables

Change-Id: I2b8a9253f2c3d1fd85304c2970ebe70213870fe9
This commit is contained in:
Johann
2017-05-01 17:54:19 -07:00
parent b1a31f8066
commit cd94d5f68e

View File

@@ -18,90 +18,90 @@
int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) { intptr_t block_size, int64_t *ssz) {
__m256i sse_reg, ssz_reg; __m256i sse_256, ssz_256;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_reg_64hi, ssz_reg_64hi; __m256i sse_hi, ssz_hi;
__m128i sse_reg128, ssz_reg128; __m128i sse_128, ssz_128;
int64_t sse; int64_t sse;
const __m256i zero_reg = _mm256_setzero_si256(); const __m256i zero = _mm256_setzero_si256();
// If the block size is 16 then the results will fit in 32 bits. // If the block size is 16 then the results will fit in 32 bits.
if (block_size == 16) { if (block_size == 16) {
__m256i coeff_reg, dqcoeff_reg, coeff_reg_hi, dqcoeff_reg_hi; __m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi;
// Load 16 elements for coeff and dqcoeff. // Load 16 elements for coeff and dqcoeff.
coeff_reg = load_tran_low(coeff); coeff_256 = load_tran_low(coeff);
dqcoeff_reg = load_tran_low(dqcoeff); dqcoeff_256 = load_tran_low(dqcoeff);
// dqcoeff - coeff // dqcoeff - coeff
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg); dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256);
// madd (dqcoeff - coeff) // madd (dqcoeff - coeff)
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg); dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256);
// madd coeff // madd coeff
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg); coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256);
// Save the higher 64 bit of each 128 bit lane. // Save the higher 64 bit of each 128 bit lane.
dqcoeff_reg_hi = _mm256_srli_si256(dqcoeff_reg, 8); dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8);
coeff_reg_hi = _mm256_srli_si256(coeff_reg, 8); coeff_hi = _mm256_srli_si256(coeff_256, 8);
// Add the higher 64 bit to the low 64 bit. // Add the higher 64 bit to the low 64 bit.
dqcoeff_reg = _mm256_add_epi32(dqcoeff_reg, dqcoeff_reg_hi); dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi);
coeff_reg = _mm256_add_epi32(coeff_reg, coeff_reg_hi); coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi);
// Expand each double word in the lower 64 bits to quad word. // Expand each double word in the lower 64 bits to quad word.
sse_reg = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg); sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero);
ssz_reg = _mm256_unpacklo_epi32(coeff_reg, zero_reg); ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero);
} else { } else {
int i; int i;
assert(block_size % 32 == 0); assert(block_size % 32 == 0);
sse_reg = zero_reg; sse_256 = zero;
ssz_reg = zero_reg; ssz_256 = zero;
for (i = 0; i < block_size; i += 32) { for (i = 0; i < block_size; i += 32) {
__m256i coeff_reg_0, coeff_reg_1, dqcoeff_reg_0, dqcoeff_reg_1; __m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1;
// Load 32 elements for coeff and dqcoeff. // Load 32 elements for coeff and dqcoeff.
coeff_reg_0 = load_tran_low(coeff + i); coeff_0 = load_tran_low(coeff + i);
dqcoeff_reg_0 = load_tran_low(dqcoeff + i); dqcoeff_0 = load_tran_low(dqcoeff + i);
coeff_reg_1 = load_tran_low(coeff + i + 16); coeff_1 = load_tran_low(coeff + i + 16);
dqcoeff_reg_1 = load_tran_low(dqcoeff + i + 16); dqcoeff_1 = load_tran_low(dqcoeff + i + 16);
// dqcoeff - coeff // dqcoeff - coeff
dqcoeff_reg_0 = _mm256_sub_epi16(dqcoeff_reg_0, coeff_reg_0); dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0);
dqcoeff_reg_1 = _mm256_sub_epi16(dqcoeff_reg_1, coeff_reg_1); dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1);
// madd (dqcoeff - coeff) // madd (dqcoeff - coeff)
dqcoeff_reg_0 = _mm256_madd_epi16(dqcoeff_reg_0, dqcoeff_reg_0); dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0);
dqcoeff_reg_1 = _mm256_madd_epi16(dqcoeff_reg_1, dqcoeff_reg_1); dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1);
// madd coeff // madd coeff
coeff_reg_0 = _mm256_madd_epi16(coeff_reg_0, coeff_reg_0); coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0);
coeff_reg_1 = _mm256_madd_epi16(coeff_reg_1, coeff_reg_1); coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1);
// Add the first madd (dqcoeff - coeff) with the second. // Add the first madd (dqcoeff - coeff) with the second.
dqcoeff_reg_0 = _mm256_add_epi32(dqcoeff_reg_0, dqcoeff_reg_1); dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1);
// Add the first madd (coeff) with the second. // Add the first madd (coeff) with the second.
coeff_reg_0 = _mm256_add_epi32(coeff_reg_0, coeff_reg_1); coeff_0 = _mm256_add_epi32(coeff_0, coeff_1);
// Expand each double word of madd (dqcoeff - coeff) to quad word. // Expand each double word of madd (dqcoeff - coeff) to quad word.
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg_0, zero_reg); exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg_0, zero_reg); exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero);
// expand each double word of madd (coeff) to quad word // expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg_0, zero_reg); exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg_0, zero_reg); exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero);
// Add each quad word of madd (dqcoeff - coeff) and madd (coeff). // Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo); sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo); ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo);
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi); sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi); ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi);
} }
} }
// Save the higher 64 bit of each 128 bit lane. // Save the higher 64 bit of each 128 bit lane.
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8); sse_hi = _mm256_srli_si256(sse_256, 8);
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8); ssz_hi = _mm256_srli_si256(ssz_256, 8);
// Add the higher 64 bit to the low 64 bit. // Add the higher 64 bit to the low 64 bit.
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi); sse_256 = _mm256_add_epi64(sse_256, sse_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi); ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi);
// Add each 64 bit from each of the 128 bit lane of the 256 bit. // Add each 64 bit from each of the 128 bit lane of the 256 bit.
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg), sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
_mm256_extractf128_si256(sse_reg, 1)); _mm256_extractf128_si256(sse_256, 1));
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg), ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256),
_mm256_extractf128_si256(ssz_reg, 1)); _mm256_extractf128_si256(ssz_256, 1));
// Store the results. // Store the results.
_mm_storel_epi64((__m128i *)(&sse), sse_reg128); _mm_storel_epi64((__m128i *)(&sse), sse_128);
_mm_storel_epi64((__m128i *)(ssz), ssz_reg128); _mm_storel_epi64((__m128i *)(ssz), ssz_128);
return sse; return sse;
} }