Nextgen branch cleanup: remove nonrd code

Code cleanup.

Change-Id: I4d8d7fa2fc61a58b819c9a18bf25cda53e3fd88c
This commit is contained in:
Yunqing Wang 2015-07-06 10:03:23 -07:00
parent a4f4ed60cf
commit cc6dc0b7d9
10 changed files with 33 additions and 1682 deletions

View File

@ -211,13 +211,6 @@ void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 2;
// Distortion threshold, quadratic in Q, scale factor to be adjusted.
cr->thresh_dist_sb = 8 * (int)(q * q);
if (cpi->sf.use_nonrd_pick_mode) {
// May want to be more conservative with thresholds in non-rd mode for now
// as rate/distortion are derived from model based on prediction residual.
cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 3;
cr->thresh_dist_sb = 4 * (int)(q * q);
}
cr->num_seg_blocks = 0;
// Set up segmentation.
// Clear down the segment map.

View File

@ -46,7 +46,6 @@
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
@ -235,20 +234,6 @@ static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
return BLOCK_8X8;
}
static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
int mi_row,
int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
mi_row, mi_col,
BLOCK_64X64);
if (var < 4)
return BLOCK_64X64;
else if (var < 10)
return BLOCK_32X32;
else
return BLOCK_16X16;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
@ -4297,32 +4282,6 @@ static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
return cpi->common.tx_mode;
}
static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
set_offsets(cpi, tile, mi_row, mi_col, bsize);
mbmi = &xd->mi[0].src_mi->mbmi;
mbmi->sb_type = bsize;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
if (mbmi->segment_id && x->in_static_area)
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
set_mode_info_seg_skip(cm, x, rd_cost, bsize);
else
vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col, rd_cost, bsize, ctx);
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
if (rd_cost->rate == INT_MAX)
vp9_rd_cost_reset(rd_cost);
}
static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
int mi_row, int mi_col,
BLOCK_SIZE bsize, BLOCK_SIZE subsize,
@ -4381,632 +4340,6 @@ static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
}
}
static void nonrd_initialize_pick_mode_context(PICK_MODE_CONTEXT *pick_mode_ctx,
MACROBLOCK *const x) {
MACROBLOCKD *const xd = &x->e_mbd;
pick_mode_ctx->mic.mbmi = xd->mi[0].src_mi->mbmi;
pick_mode_ctx->skip_txfm[0] = x->skip_txfm[0];
pick_mode_ctx->skip = x->skip;
}
static void nonrd_increment_rate_distortion(RD_COST *rd_cost,
RD_COST *increment) {
if (increment->rate != INT_MAX && increment->dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += increment->rate;
rd_cost->dist += increment->dist;
}
}
static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, RD_COST *rd_cost,
int do_recon, int64_t best_rd,
PC_TREE *pc_tree) {
const SPEED_FEATURES *const sf = &cpi->sf;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i;
BLOCK_SIZE subsize = bsize;
RD_COST this_rdc, sum_rdc, best_rdc;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
(void) *tp_orig;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
vp9_rd_cost_init(&sum_rdc);
vp9_rd_cost_reset(&best_rdc);
best_rdc.rdcost = best_rd;
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (sf->auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= sf->max_partition_size &&
bsize >= sf->min_partition_size);
partition_horz_allowed &= ((bsize <= sf->max_partition_size &&
bsize > sf->min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= sf->max_partition_size &&
bsize > sf->min_partition_size) ||
force_vert_split);
do_split &= bsize > sf->min_partition_size;
}
if (sf->use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
// PARTITION_NONE
if (partition_none_allowed) {
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
&this_rdc, bsize, ctx);
nonrd_initialize_pick_mode_context(ctx, x);
ctx->pred_pixel_ready = 0;
if (this_rdc.rate != INT_MAX) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
int64_t dist_breakout_thr = sf->partition_search_breakout_dist_thr;
int64_t rate_breakout_thr = sf->partition_search_breakout_rate_thr;
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
if (!x->e_mbd.lossless &&
this_rdc.rate < rate_breakout_thr &&
this_rdc.dist < dist_breakout_thr) {
do_split = 0;
do_rect = 0;
}
}
}
}
// store estimated motion vector
store_pred_mv(x, ctx);
// PARTITION_SPLIT
if (do_split) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
load_pred_mv(x, ctx);
nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
subsize, &this_rdc, 0,
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
nonrd_increment_rate_distortion(&sum_rdc, &this_rdc);
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (sf->less_rectangular_check)
do_rect &= !partition_none_allowed;
}
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (sf->adaptive_motion_search)
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->horizontal[0]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[0], x);
pc_tree->horizontal[0].pred_pixel_ready = 0;
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col, &this_rdc, subsize,
&pc_tree->horizontal[1]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[1], x);
pc_tree->horizontal[1].pred_pixel_ready = 0;
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
nonrd_increment_rate_distortion(&sum_rdc, &this_rdc);
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
}
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (sf->adaptive_motion_search)
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->vertical[0]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[0], x);
pc_tree->vertical[0].pred_pixel_ready = 0;
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms, &this_rdc, subsize,
&pc_tree->vertical[1]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[1], x);
pc_tree->vertical[1].pred_pixel_ready = 0;
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
nonrd_increment_rate_distortion(&sum_rdc, &this_rdc);
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
}
}
*rd_cost = best_rdc;
if (best_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(rd_cost);
return;
}
// update mode info array
subsize = get_subsize(bsize, pc_tree->partitioning);
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, subsize,
pc_tree);
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((oxcf->aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
best_rdc.rate);
}
if (oxcf->aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
best_rdc.rate, best_rdc.dist);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void nonrd_select_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO *mi,
TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
RD_COST *rd_cost, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
const int mis = cm->mi_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
RD_COST this_rdc;
vp9_rd_cost_reset(&this_rdc);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
subsize = (bsize >= BLOCK_8X8) ? mi[0].src_mi->mbmi.sb_type : BLOCK_4X4;
partition = partition_lookup[bsl][subsize];
if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
subsize >= BLOCK_16X16) {
cpi->sf.max_partition_size = BLOCK_32X32;
cpi->sf.min_partition_size = BLOCK_8X8;
nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, bsize,
rd_cost, 0, INT64_MAX, pc_tree);
} else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
cpi->sf.max_partition_size = BLOCK_16X16;
cpi->sf.min_partition_size = BLOCK_8X8;
nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, bsize,
rd_cost, 0, INT64_MAX, pc_tree);
} else {
switch (partition) {
case PARTITION_NONE:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->none);
nonrd_initialize_pick_mode_context(&pc_tree->none, x);
pc_tree->none.pred_pixel_ready = 1;
break;
case PARTITION_VERT:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->vertical[0]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[0], x);
pc_tree->vertical[0].pred_pixel_ready = 1;
if (mi_col + hbs < cm->mi_cols) {
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
&this_rdc, subsize, &pc_tree->vertical[1]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[1], x);
pc_tree->vertical[1].pred_pixel_ready = 1;
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
}
break;
case PARTITION_HORZ:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->horizontal[0]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[0], x);
pc_tree->horizontal[0].pred_pixel_ready = 1;
if (mi_row + hbs < cm->mi_rows) {
nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
&this_rdc, subsize, &pc_tree->horizontal[0]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[1], x);
pc_tree->horizontal[1].pred_pixel_ready = 1;
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
nonrd_select_partition(cpi, tile, mi, tp, mi_row, mi_col,
subsize, output_enabled, rd_cost,
pc_tree->split[0]);
nonrd_select_partition(cpi, tile, mi + hbs, tp,
mi_row, mi_col + hbs, subsize, output_enabled,
&this_rdc, pc_tree->split[1]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
nonrd_select_partition(cpi, tile, mi + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
&this_rdc, pc_tree->split[2]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
nonrd_select_partition(cpi, tile, mi + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize,
output_enabled, &this_rdc, pc_tree->split[3]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
break;
default:
assert(0 && "Invalid partition type.");
break;
}
}
if (bsize == BLOCK_64X64 && output_enabled) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
rd_cost->rate, rd_cost->dist);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
}
}
static void nonrd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO *mi,
TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
RD_COST *rd_cost, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
const int mis = cm->mi_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
RD_COST this_rdc;
vp9_rd_cost_reset(&this_rdc);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
subsize = (bsize >= BLOCK_8X8) ? mi[0].src_mi->mbmi.sb_type : BLOCK_4X4;
partition = partition_lookup[bsl][subsize];
switch (partition) {
case PARTITION_NONE:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->none);
nonrd_initialize_pick_mode_context(&pc_tree->none, x);
break;
case PARTITION_VERT:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->vertical[0]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[0], x);
if (mi_col + hbs < cm->mi_cols) {
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
&this_rdc, subsize, &pc_tree->vertical[1]);
nonrd_initialize_pick_mode_context(&pc_tree->vertical[1], x);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
}
break;
case PARTITION_HORZ:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, rd_cost,
subsize, &pc_tree->horizontal[0]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[0], x);
if (mi_row + hbs < cm->mi_rows) {
nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
&this_rdc, subsize, &pc_tree->horizontal[0]);
nonrd_initialize_pick_mode_context(&pc_tree->horizontal[1], x);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
subsize, output_enabled, rd_cost,
pc_tree->split[0]);
nonrd_use_partition(cpi, tile, mi + hbs, tp,
mi_row, mi_col + hbs, subsize, output_enabled,
&this_rdc, pc_tree->split[1]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
nonrd_use_partition(cpi, tile, mi + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
&this_rdc, pc_tree->split[2]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
nonrd_use_partition(cpi, tile, mi + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
&this_rdc, pc_tree->split[3]);
nonrd_increment_rate_distortion(rd_cost, &this_rdc);
break;
default:
assert(0 && "Invalid partition type.");
break;
}
if (bsize == BLOCK_64X64 && output_enabled) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
rd_cost->rate, rd_cost->dist);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
}
}
static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
SPEED_FEATURES *const sf = &cpi->sf;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
RD_COST dummy_rdc;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO *mi = cm->mi + idx_str;
BLOCK_SIZE bsize;
x->in_static_area = 0;
x->source_variance = UINT_MAX;
vp9_zero(x->pred_mv);
vp9_rd_cost_init(&dummy_rdc);
// Set the partition type of the 64X64 block
switch (sf->partition_search_type) {
case VAR_BASED_PARTITION:
choose_partitioning(cpi, tile, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rdc, cpi->pc_root);
break;
case SOURCE_VAR_BASED_PARTITION:
set_source_var_based_partition(cpi, tile, mi, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rdc, cpi->pc_root);
break;
case FIXED_PARTITION:
bsize = sf->partition_search_type == FIXED_PARTITION ?
sf->always_this_block_size :
get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rdc, cpi->pc_root);
break;
case REFERENCE_PARTITION:
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
x->in_static_area = is_background(cpi, tile, mi_row, mi_col);
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
xd->mi[0].src_mi->mbmi.segment_id && x->in_static_area) {
auto_partition_range(cpi, tile, mi_row, mi_col,
&sf->min_partition_size,
&sf->max_partition_size);
nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rdc, 1,
INT64_MAX, cpi->pc_root);
} else {
choose_partitioning(cpi, tile, mi_row, mi_col);
nonrd_select_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rdc, cpi->pc_root);
}
break;
default:
assert(0);
break;
}
}
}
// end RTC play code
static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
const SPEED_FEATURES *const sf = &cpi->sf;
const VP9_COMMON *const cm = &cpi->common;
const uint8_t *src = cpi->Source->y_buffer;
const uint8_t *last_src = cpi->Last_Source->y_buffer;
const int src_stride = cpi->Source->y_stride;
const int last_stride = cpi->Last_Source->y_stride;
// Pick cutoff threshold
const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
(cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
(cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
DECLARE_ALIGNED_ARRAY(16, int, hist, VAR_HIST_BINS);
diff *var16 = cpi->source_diff_var;
int sum = 0;
int i, j;
vpx_memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
for (i = 0; i < cm->mb_rows; i++) {
for (j = 0; j < cm->mb_cols; j++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case VPX_BITS_8:
vp9_highbd_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
case VPX_BITS_10:
vp9_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
case VPX_BITS_12:
vp9_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
default:
assert(0 && "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10"
" or VPX_BITS_12");
return -1;
}
} else {
vp9_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
}
#else
vp9_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
#endif // CONFIG_VP9_HIGHBITDEPTH
var16->var = var16->sse -
(((uint32_t)var16->sum * var16->sum) >> 8);
if (var16->var >= VAR_HIST_MAX_BG_VAR)
hist[VAR_HIST_BINS - 1]++;
else
hist[var16->var / VAR_HIST_FACTOR]++;
src += 16;
last_src += 16;
var16++;
}
src = src - cm->mb_cols * 16 + 16 * src_stride;
last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
}
cpi->source_var_thresh = 0;
if (hist[VAR_HIST_BINS - 1] < cutoff) {
for (i = 0; i < VAR_HIST_BINS - 1; i++) {
sum += hist[i];
if (sum > cutoff) {
cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
return 0;
}
}
}
return sf->search_type_check_frequency;
}
static void source_var_based_partition_search_method(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
if (cm->frame_type == KEY_FRAME) {
// For key frame, use SEARCH_PARTITION.
sf->partition_search_type = SEARCH_PARTITION;
} else if (cm->intra_only) {
sf->partition_search_type = FIXED_PARTITION;
} else {
if (cm->last_width != cm->width || cm->last_height != cm->height) {
if (cpi->source_diff_var)
vpx_free(cpi->source_diff_var);
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
}
if (!cpi->frames_till_next_var_check)
cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
if (cpi->frames_till_next_var_check > 0) {
sf->partition_search_type = FIXED_PARTITION;
cpi->frames_till_next_var_check--;
}
}
}
static int get_skip_encode_frame(const VP9_COMMON *cm) {
unsigned int intra_count = 0, inter_count = 0;
int j;
@ -5063,9 +4396,6 @@ static void encode_tiles(VP9_COMP *cpi) {
for (mi_row = ptile->mi_row_start; mi_row < ptile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
if (cpi->sf.use_nonrd_pick_mode && !frame_is_intra_only(cm))
encode_nonrd_sb_row(cpi, ptile, mi_row, &tok[tile_row][tile_col]);
else
encode_rd_sb_row(cpi, ptile, mi_row, &tok[tile_row][tile_col]);
}
cpi->tok_count[tile_row][tile_col] =
@ -5298,25 +4628,6 @@ static void encode_frame_internal(VP9_COMP *cpi) {
x->quant_fp = cpi->sf.use_quant_fp;
vp9_zero(x->skip_txfm);
if (sf->use_nonrd_pick_mode) {
// Initialize internal buffer pointers for rtc coding, where non-RD
// mode decision is used and hence no buffer pointer swap needed.
int i;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
vp9_zero(x->zcoeff_blk);
if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
source_var_based_partition_search_method(cpi);
}
{
struct vpx_usec_timer emr_timer;
@ -5662,7 +4973,7 @@ static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
cpi->sf.allow_skip_recode;
if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
if (!x->skip_recode)
vpx_memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
x->skip_optimize = ctx->is_coded;

View File

@ -2938,8 +2938,8 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
if (!cpi->sf.use_nonrd_pick_mode)
vp9_pack_bitstream(cpi, dest, size);
vp9_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);

View File

@ -1,903 +0,0 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCKD *xd,
const TileInfo *const tile,
MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
int_mv *mv_ref_list,
int mi_row, int mi_col) {
const int *ref_sign_bias = cm->ref_frame_sign_bias;
int i, refmv_count = 0;
const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
int different_ref_found = 0;
int context_counter = 0;
int const_motion = 0;
// Blank the reference vector list
vpx_memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
// The nearest 2 blocks are treated differently
// if the size < 8x8 we get the mv from the bmi substructure,
// and we also need to keep a mode count.
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride].src_mi;
const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
// Keep counts for entropy encoding.
context_counter += mode_2_counter[candidate->mode];
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1));
}
}
const_motion = 1;
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride].src_mi->mbmi;
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(candidate->mv[0]);
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (different_ref_found && !refmv_count) {
for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
* xd->mi_stride].src_mi->mbmi;
// If the candidate is INTRA we don't want to consider its mv.
IF_DIFF_REF_FRAME_ADD_MV(candidate);
}
}
}
Done:
mi->mbmi.mode_context[ref_frame] = counter_to_context[context_counter];
// Clamp vectors
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
return const_motion;
}
static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0, 0, 0, 0}};
const int step_param = cpi->sf.mv.fullpel_search_step_param;
const int sadpb = x->sadperbit16;
MV mvp_full;
const int ref = mbmi->ref_frame[0];
const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
int dis;
int rate_mode;
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
int rv = 0;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
ref);
if (cpi->common.show_frame &&
(x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[LAST_FRAME])
return rv;
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp9_set_mv_search_range(x, &ref_mv);
assert(x->mv_best_ref_index[ref] <= 2);
if (x->mv_best_ref_index[ref] < 2)
mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
else
mvp_full = x->pred_mv[ref];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list),
&ref_mv, &tmp_mv->as_mv, INT_MAX, 0);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv->as_mv.row * 8;
mvp_full.col = tmp_mv->as_mv.col * 8;
*rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_NEW_INTER
if (has_second_ref(mbmi))
rate_mode = cpi->inter_compound_mode_cost[mbmi->mode_context[ref]]
[INTER_COMPOUND_OFFSET(NEW_NEWMV)];
else
#endif // CONFIG_NEW_INTER
rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref]]
[INTER_OFFSET(NEWMV)];
rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
best_rd_sofar);
if (rv) {
cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL, 0, 0);
x->pred_mv[ref] = tmp_mv->as_mv;
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
return rv;
}
static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
unsigned int *var_y, unsigned int *sse_y) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = pd->dequant[0];
const uint32_t ac_quant = pd->dequant[1];
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
*var_y = var;
*sse_y = sse;
if (sse < dc_quant * dc_quant >> 6)
x->skip_txfm[0] = 1;
else if (var < ac_quant * ac_quant >> 6)
x->skip_txfm[0] = 2;
else
x->skip_txfm[0] = 0;
if (cpi->common.tx_mode == TX_MODE_SELECT) {
if (sse > (var << 2))
xd->mi[0].src_mi->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
else
xd->mi[0].src_mi->mbmi.tx_size = TX_8X8;
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
xd->mi[0].src_mi->mbmi.tx_size > TX_16X16)
xd->mi[0].src_mi->mbmi.tx_size = TX_16X16;
} else {
xd->mi[0].src_mi->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(sse - var, 1 << num_pels_log2_lookup[bsize],
dc_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(sse - var, 1 << num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(sse - var, 1 << num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum = rate >> 1;
*out_dist_sum = dist << 3;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(var,
1 << num_pels_log2_lookup[bsize],
ac_quant >> (xd->bd - 5),
&rate,
&dist);
} else {
vp9_model_rd_from_var_lapndz(var,
1 << num_pels_log2_lookup[bsize],
ac_quant >> 3,
&rate,
&dist);
}
#else
vp9_model_rd_from_var_lapndz(var,
1 << num_pels_log2_lookup[bsize],
ac_quant >> 3,
&rate,
&dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
int i;
for (i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL)
p->in_use = 0;
}
static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MV_REFERENCE_FRAME ref_frame,
PREDICTION_MODE this_mode,
unsigned int var_y, unsigned int sse_y,
struct buf_2d yv12_mb[][MAX_MB_PLANE],
int *rate, int64_t *dist) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi;
const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var = var_y, sse = sse_y;
// Skipping threshold for ac.
unsigned int thresh_ac;
// Skipping threshold for dc.
unsigned int thresh_dc;
if (x->encode_breakout > 0) {
// Set a maximum for threshold to avoid big PSNR loss in low bit rate
// case. Use extreme low threshold for static frames to limit
// skipping.
const unsigned int max_thresh = 36000;
// The encode_breakout input
const unsigned int min_thresh =
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
#if CONFIG_VP9_HIGHBITDEPTH
const int shift = 2 * xd->bd - 16;
#endif
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
// Adjust ac threshold according to partition size.
thresh_ac >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
thresh_ac = 0;
thresh_dc = 0;
}
// Y skipping condition checking for ac and dc.
if (var <= thresh_ac && (sse - var) <= thresh_dc) {
unsigned int sse_u, sse_v;
unsigned int var_u, var_v;
// Skip UV prediction unless breakout is zero (lossless) to save
// computation with low impact on the result
if (x->encode_breakout == 0) {
xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}
var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse_u);
// U skipping condition checking
if ((var_u * 4 <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
x->plane[2].src.stride,
xd->plane[2].dst.buf,
xd->plane[2].dst.stride, &sse_v);
// V skipping condition checking
if ((var_v * 4 <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
x->skip = 1;
// The cost of skip bit needs to be added.
#if CONFIG_NEW_INTER
if (has_second_ref(mbmi))
*rate = cpi->inter_compound_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_COMPOUND_OFFSET(this_mode)];
else
#endif // CONFIG_NEW_INTER
*rate = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
// More on this part of rate
// rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
// Scaling factor for SSE from spatial domain to frequency
// domain is 16. Adjust distortion accordingly.
// TODO(yunqingwang): In this function, only y-plane dist is
// calculated.
*dist = (sse << 4); // + ((sse_u + sse_v) << 4);
// *disable_skip = 1;
}
}
}
}
struct estimate_block_intra_args {
VP9_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int rate;
int64_t dist;
};
static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct estimate_block_intra_args* const args = arg;
VP9_COMP *const cpi = args->cpi;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int i, j;
int rate;
int64_t dist;
unsigned int var_y, sse_y;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
assert(plane == 0);
(void) plane;
p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
// Use source buffer as an approximation for the fully reconstructed buffer.
vp9_predict_intra_block(xd, block >> (2 * tx_size),
b_width_log2_lookup[plane_bsize],
tx_size, args->mode,
#if CONFIG_FILTERINTRA
0,
#endif
p->src.buf, src_stride,
pd->dst.buf, dst_stride,
i, j, 0);
// This procedure assumes zero offset from p->src.buf and pd->dst.buf.
model_rd_for_sb_y(cpi, bsize_tx, x, xd, &rate, &dist, &var_y, &sse_y);
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rate += rate;
args->dist += dist;
}
static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][INTER_MODES] = {
#if CONFIG_NEW_INTER
{THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV, THR_NEW2MV},
{THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG, THR_NEW2G},
{THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA, THR_NEW2A},
#else
{THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
{THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
{THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA},
#endif // CONFIG_NEW_INTER
};
// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
const TileInfo *const tile,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
struct macroblockd_plane *const pd = &xd->plane[0];
PREDICTION_MODE best_mode = ZEROMV;
MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
TX_SIZE best_tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cm->tx_mode]);
INTERP_FILTER best_pred_filter = EIGHTTAP;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
RD_COST this_rdc, best_rdc;
uint8_t skip_txfm = 0;
// var_y and sse_y are saved to be used in skipping checking
unsigned int var_y = UINT_MAX;
unsigned int sse_y = UINT_MAX;
// Reduce the intra cost penalty for small blocks (<=16x16).
const int reduction_fac =
(cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
bsize <= BLOCK_16X16) ? 4 : 1;
const int intra_cost_penalty = vp9_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) / reduction_fac;
const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
intra_cost_penalty, 0);
const int intra_mode_cost = 50;
const int8_t segment_id = mbmi->segment_id;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = cpi->rd.thresh_freq_fact[bsize];
INTERP_FILTER filter_ref = cm->interp_filter;
const int bsl = mi_width_log2_lookup[bsize];
const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
int const_motion[MAX_REF_FRAMES] = { 0 };
const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
// For speed 6, the result of interp filter is reused later in actual encoding
// process.
// tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
PRED_BUFFER tmp[4];
DECLARE_ALIGNED_ARRAY(16, uint8_t, pred_buf, 3 * 64 * 64);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED_ARRAY(16, uint16_t, pred_buf_16, 3 * 64 * 64);
#endif
struct buf_2d orig_dst = pd->dst;
PRED_BUFFER *best_pred = NULL;
PRED_BUFFER *this_mode_pred = NULL;
const int pixels_in_block = bh * bw;
if (cpi->sf.reuse_inter_pred_sby) {
int i;
for (i = 0; i < 3; i++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
else
tmp[i].data = &pred_buf[pixels_in_block * i];
#else
tmp[i].data = &pred_buf[pixels_in_block * i];
#endif // CONFIG_VP9_HIGHBITDEPTH
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
x->skip = 0;
// initialize mode decisions
vp9_rd_cost_reset(&best_rdc);
vp9_rd_cost_reset(&this_rdc);
vp9_rd_cost_reset(rd_cost);
vpx_memset(mbmi, 0, sizeof(MB_MODE_INFO));
mbmi->sb_type = bsize;
mbmi->ref_frame[0] = NONE;
mbmi->ref_frame[1] = NONE;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cm->tx_mode]);
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ?
EIGHTTAP : cm->interp_filter;
mbmi->segment_id = segment_id;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
PREDICTION_MODE this_mode;
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
#if CONFIG_GLOBAL_MOTION
frame_mv[ZEROMV][ref_frame].as_int =
cm->global_motion[ref_frame][0].mv.as_int;
#else
frame_mv[ZEROMV][ref_frame].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
if (xd->up_available)
filter_ref = xd->mi[-xd->mi_stride].src_mi->mbmi.interp_filter;
else if (xd->left_available)
filter_ref = xd->mi[-1].src_mi->mbmi.interp_filter;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
int_mv *const candidates = mbmi->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
if (!cm->error_resilient_mode)
vp9_find_mv_refs(cm, xd, tile, xd->mi[0].src_mi, ref_frame,
candidates, mi_row, mi_col);
else
const_motion[ref_frame] = mv_refs_rt(cm, xd, tile, xd->mi[0].src_mi,
ref_frame, candidates,
mi_row, mi_col);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&frame_mv[NEARESTMV][ref_frame],
&frame_mv[NEARMV][ref_frame]);
if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
ref_frame, bsize);
} else {
continue;
}
// Select prediction reference frames.
xd->plane[0].pre[0] = yv12_mb[ref_frame][0];
clamp_mv2(&frame_mv[NEARESTMV][ref_frame].as_mv, xd);
clamp_mv2(&frame_mv[NEARMV][ref_frame].as_mv, xd);
mbmi->ref_frame[0] = ref_frame;
#if CONFIG_NEW_INTER
for (this_mode = NEARESTMV; this_mode <= NEW_NEWMV; ++this_mode) {
#else
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
#endif // CONFIG_NEW_INTER
int rate_mv = 0;
int mode_rd_thresh;
#if CONFIG_GLOBAL_MOTION
if (const_motion[ref_frame] && this_mode == NEARMV)
#else // CONFIG_GLOBAL_MOTION
#if CONFIG_NEW_INTER
if (const_motion[ref_frame] &&
(this_mode == NEARMV || this_mode == ZEROMV ||
this_mode == ZERO_ZEROMV))
#else
if (const_motion[ref_frame] &&
(this_mode == NEARMV || this_mode == ZEROMV))
#endif // CONFIG_NEW_INTER
#endif // CONFIG_GLOBAL_MOTION
continue;
if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
continue;
#if CONFIG_NEW_INTER
if (has_second_ref(mbmi))
mode_rd_thresh =
rd_threshes[mode_idx[ref_frame - LAST_FRAME]
[INTER_COMPOUND_OFFSET(this_mode)]];
else
#endif // CONFIG_NEW_INTER
mode_rd_thresh =
rd_threshes[mode_idx[ref_frame - LAST_FRAME]
[INTER_OFFSET(this_mode)]];
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[this_mode]))
continue;
#if CONFIG_NEW_INTER
if (this_mode == NEWMV || this_mode == NEW_NEWMV) {
#else
if (this_mode == NEWMV) {
#endif // CONFIG_NEW_INTER
if (cpi->sf.partition_search_type != VAR_BASED_PARTITION &&
this_rdc.rdcost < (int64_t)(1 << num_pels_log2_lookup[bsize]))
continue;
if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame],
&rate_mv, best_rdc.rdcost))
continue;
}
#if CONFIG_NEW_INTER
if (this_mode != NEARESTMV && this_mode != NEAREST_NEARESTMV &&
#else
if (this_mode != NEARESTMV &&
#endif // CONFIG_NEW_INTER
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[NEARESTMV][ref_frame].as_int)
continue;
mbmi->mode = this_mode;
mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
// Search for the best prediction filter type, when the resulting
// motion vector is at sub-pixel accuracy level for luma component, i.e.,
// the last three bits are all zeros.
if (cpi->sf.reuse_inter_pred_sby) {
#if CONFIG_NEW_INTER
if (this_mode == NEARESTMV || this_mode == NEAREST_NEARESTMV) {
#else
if (this_mode == NEARESTMV) {
#endif // CONFIG_NEW_INTER
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
#if CONFIG_NEW_INTER
if ((this_mode == NEWMV || this_mode == NEW_NEWMV ||
filter_ref == SWITCHABLE) &&
#else
if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
#endif // CONFIG_NEW_INTER
pred_filter_search &&
((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
(mbmi->mv[0].as_mv.col & 0x07) != 0)) {
int pf_rate[3];
int64_t pf_dist[3];
unsigned int pf_var[3];
unsigned int pf_sse[3];
TX_SIZE pf_tx_size[3];
int64_t best_cost = INT64_MAX;
INTERP_FILTER best_filter = SWITCHABLE, filter;
PRED_BUFFER *current_pred = this_mode_pred;
for (filter = EIGHTTAP; filter <= EIGHTTAP_SHARP; ++filter) {
int64_t cost;
mbmi->interp_filter = filter;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter],
&pf_dist[filter], &pf_var[filter], &pf_sse[filter]);
cost = RDCOST(x->rdmult, x->rddiv,
vp9_get_switchable_rate(cpi) + pf_rate[filter],
pf_dist[filter]);
pf_tx_size[filter] = mbmi->tx_size;
if (cost < best_cost) {
best_filter = filter;
best_cost = cost;
skip_txfm = x->skip_txfm[0];
if (cpi->sf.reuse_inter_pred_sby) {
if (this_mode_pred != current_pred) {
free_pred_buffer(this_mode_pred);
this_mode_pred = current_pred;
}
if (filter < EIGHTTAP_SHARP) {
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
}
if (cpi->sf.reuse_inter_pred_sby && this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mbmi->interp_filter = best_filter;
mbmi->tx_size = pf_tx_size[mbmi->interp_filter];
this_rdc.rate = pf_rate[mbmi->interp_filter];
this_rdc.dist = pf_dist[mbmi->interp_filter];
var_y = pf_var[mbmi->interp_filter];
sse_y = pf_sse[mbmi->interp_filter];
x->skip_txfm[0] = skip_txfm;
} else {
mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP: filter_ref;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&var_y, &sse_y);
}
this_rdc.rate += rate_mv;
#if CONFIG_NEW_INTER
if (has_second_ref(mbmi))
this_rdc.rate += cpi->inter_compound_mode_cost
[mbmi->mode_context[ref_frame]]
[INTER_COMPOUND_OFFSET(this_mode)];
else
#endif // CONFIG_NEW_INTER
this_rdc.rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
// Skipping checking: test to see if this block can be reconstructed by
// prediction only.
if (cpi->allow_encode_breakout) {
encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame,
this_mode, var_y, sse_y, yv12_mb,
&this_rdc.rate, &this_rdc.dist);
if (x->skip) {
this_rdc.rate += rate_mv;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
}
}
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
}
#else
(void)ctx;
#endif
if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
best_rdc = this_rdc;
best_mode = this_mode;
best_pred_filter = mbmi->interp_filter;
best_tx_size = mbmi->tx_size;
best_ref_frame = ref_frame;
skip_txfm = x->skip_txfm[0];
if (cpi->sf.reuse_inter_pred_sby) {
free_pred_buffer(best_pred);
best_pred = this_mode_pred;
}
} else {
if (cpi->sf.reuse_inter_pred_sby)
free_pred_buffer(this_mode_pred);
}
if (x->skip)
break;
}
// If the current reference frame is valid and we found a usable mode,
// we are done.
if (best_rdc.rdcost < INT64_MAX)
break;
}
// If best prediction is not in dst buf, then copy the prediction block from
// temp buf to dst buf.
if (best_pred != NULL && cpi->sf.reuse_inter_pred_sby &&
best_pred->data != orig_dst.buf) {
pd->dst = orig_dst;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
vp9_highbd_convolve_copy(best_pred->data, bw, pd->dst.buf, pd->dst.stride,
NULL, 0, NULL, 0, bw, bh, xd->bd);
} else {
vp9_convolve_copy(best_pred->data, bw, pd->dst.buf, pd->dst.stride,
NULL, 0, NULL, 0, bw, bh);
}
#else
vp9_convolve_copy(best_pred->data, bw, pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
mbmi->mode = best_mode;
mbmi->interp_filter = best_pred_filter;
mbmi->tx_size = best_tx_size;
mbmi->ref_frame[0] = best_ref_frame;
mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
xd->mi[0].src_mi->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
x->skip_txfm[0] = skip_txfm;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
if (!x->skip && best_rdc.rdcost > inter_mode_thresh &&
bsize <= cpi->sf.max_intra_bsize) {
PREDICTION_MODE this_mode;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
const TX_SIZE intra_tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
if (cpi->sf.reuse_inter_pred_sby) {
pd->dst.buf = tmp[0].data;
pd->dst.stride = bw;
}
for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
const TX_SIZE saved_tx_size = mbmi->tx_size;
args.mode = this_mode;
args.rate = 0;
args.dist = 0;
mbmi->tx_size = intra_tx_size;
vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
estimate_block_intra, &args);
mbmi->tx_size = saved_tx_size;
this_rdc.rate = args.rate;
this_rdc.dist = args.dist;
this_rdc.rate += cpi->mbmode_cost[this_mode];
this_rdc.rate += intra_cost_penalty;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost + intra_mode_cost < best_rdc.rdcost) {
best_rdc = this_rdc;
mbmi->mode = this_mode;
mbmi->tx_size = intra_tx_size;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->uv_mode = this_mode;
mbmi->mv[0].as_int = INVALID_MV;
} else {
x->skip_txfm[0] = skip_txfm;
}
}
if (cpi->sf.reuse_inter_pred_sby)
pd->dst = orig_dst;
}
*rd_cost = best_rdc;
}

View File

@ -1,30 +0,0 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_ENCODER_VP9_PICKMODE_H_
#define VP9_ENCODER_VP9_PICKMODE_H_
#include "vp9/encoder/vp9_encoder.h"
#ifdef __cplusplus
extern "C" {
#endif
void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
const struct TileInfo *const tile,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP9_ENCODER_VP9_PICKMODE_H_

View File

@ -1082,15 +1082,7 @@ int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
} else {
q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
}
if (cpi->sf.use_nonrd_pick_mode) {
if (cpi->sf.force_frame_boost == 1)
q -= cpi->sf.max_delta_qindex;
if (q < *bottom_index)
*bottom_index = q;
else if (q > *top_index)
*top_index = q;
}
return q;
}

View File

@ -314,57 +314,52 @@ void vp9_initialize_rd_consts(VP9_COMP *cpi) {
set_block_thresholds(cm, rd);
if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME) {
fill_token_costs(x->token_costs, cm->fc.coef_probs);
fill_token_costs(x->token_costs, cm->fc.coef_probs);
#if CONFIG_TX_SKIP
if (FOR_SCREEN_CONTENT)
fill_token_costs_pxd(x->token_costs_pxd, cm->fc.coef_probs_pxd);
if (FOR_SCREEN_CONTENT)
fill_token_costs_pxd(x->token_costs_pxd, cm->fc.coef_probs_pxd);
#endif // CONFIG_TX_SKIP
#if CONFIG_EXT_PARTITION
vp9_cost_tokens(cpi->partition_cost[0], get_partition_probs(cm, 0),
vp9_partition_tree);
for (i = 1; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
vp9_ext_partition_tree);
vp9_cost_tokens(cpi->partition_cost[0], get_partition_probs(cm, 0),
vp9_partition_tree);
for (i = 1; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
vp9_ext_partition_tree);
#else
for (i = 0; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
vp9_partition_tree);
for (i = 0; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
vp9_partition_tree);
#endif
}
if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
cm->frame_type == KEY_FRAME) {
fill_mode_costs(cpi);
fill_mode_costs(cpi);
if (!frame_is_intra_only(cm)) {
vp9_build_nmv_cost_table(x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp
: x->nmvcost,
&cm->fc.nmvc,
if (!frame_is_intra_only(cm)) {
vp9_build_nmv_cost_table(x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp
: x->nmvcost,
&cm->fc.nmvc,
#if CONFIG_INTRABC
1,
1,
#endif // CONFIG_INTRABC
cm->allow_high_precision_mv);
cm->allow_high_precision_mv);
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
cm->fc.inter_mode_probs[i], vp9_inter_mode_tree);
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
cm->fc.inter_mode_probs[i], vp9_inter_mode_tree);
#if CONFIG_NEW_INTER
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
vp9_cost_tokens((int *)cpi->inter_compound_mode_cost[i],
cm->fc.inter_compound_mode_probs[i],
vp9_inter_compound_mode_tree);
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
vp9_cost_tokens((int *)cpi->inter_compound_mode_cost[i],
cm->fc.inter_compound_mode_probs[i],
vp9_inter_compound_mode_tree);
#endif // CONFIG_NEW_INTER
#if CONFIG_INTRABC
} else {
vp9_build_nmv_cost_table(x->nmvjointcost,
x->ndvcost,
&cm->fc.ndvc, 0, 0);
} else {
vp9_build_nmv_cost_table(x->nmvjointcost,
x->ndvcost,
&cm->fc.ndvc, 0, 0);
#endif // CONFIG_INTRABC
}
}
#if CONFIG_COPY_MODE

View File

@ -278,7 +278,6 @@ static void set_rt_speed_feature(VP9_COMP *cpi, SPEED_FEATURES *sf,
(frames_since_key % (sf->last_partitioning_redo_frequency << 1) == 1);
sf->max_delta_qindex = is_keyframe ? 20 : 15;
sf->partition_search_type = REFERENCE_PARTITION;
sf->use_nonrd_pick_mode = 1;
sf->allow_skip_recode = 0;
sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEW_ZERO;
sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST_NEW_ZERO;
@ -397,7 +396,6 @@ void vp9_set_speed_features(VP9_COMP *cpi) {
sf->use_fast_coef_costing = 0;
sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
sf->schedule_mode_search = 0;
sf->use_nonrd_pick_mode = 0;
for (i = 0; i < BLOCK_SIZES; ++i)
sf->inter_mode_mask[i] = INTER_ALL;
sf->max_intra_bsize = BLOCK_64X64;

View File

@ -402,9 +402,6 @@ typedef struct SPEED_FEATURES {
// by only looking at counts from 1/2 the bands.
FAST_COEFF_UPDATE use_fast_coef_updates;
// This flag controls the use of non-RD mode decision.
int use_nonrd_pick_mode;
// A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV
// modes are used in order from LSB to MSB for each BLOCK_SIZE.
int inter_mode_mask[BLOCK_SIZES];

View File

@ -51,7 +51,6 @@ VP9_CX_SRCS-yes += encoder/vp9_quantize.h
VP9_CX_SRCS-yes += encoder/vp9_ratectrl.h
VP9_CX_SRCS-yes += encoder/vp9_rd.h
VP9_CX_SRCS-yes += encoder/vp9_rdopt.h
VP9_CX_SRCS-yes += encoder/vp9_pickmode.h
VP9_CX_SRCS-yes += encoder/vp9_svc_layercontext.h
VP9_CX_SRCS-yes += encoder/vp9_tokenize.h
VP9_CX_SRCS-yes += encoder/vp9_treewriter.h
@ -64,7 +63,6 @@ VP9_CX_SRCS-yes += encoder/vp9_quantize.c
VP9_CX_SRCS-yes += encoder/vp9_ratectrl.c
VP9_CX_SRCS-yes += encoder/vp9_rd.c
VP9_CX_SRCS-yes += encoder/vp9_rdopt.c
VP9_CX_SRCS-yes += encoder/vp9_pickmode.c
VP9_CX_SRCS-yes += encoder/vp9_sad.c
VP9_CX_SRCS-yes += encoder/vp9_segmentation.c
VP9_CX_SRCS-yes += encoder/vp9_segmentation.h