Merge "quantize test: consolidate sizes"

This commit is contained in:
Johann Koenig 2017-08-04 20:34:50 +00:00 committed by Gerrit Code Review
commit cbb83ba4aa

View File

@ -16,6 +16,7 @@
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "./vp9_rtcd.h"
#include "test/acm_random.h"
#include "test/buffer.h"
#include "test/clear_system_state.h"
@ -40,168 +41,130 @@ typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count,
tran_low_t *dqcoeff, const int16_t *dequant,
uint16_t *eob, const int16_t *scan,
const int16_t *iscan);
typedef std::tr1::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t>
typedef std::tr1::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t,
int /*max_size*/>
QuantizeParam;
class VP9QuantizeTest : public ::testing::TestWithParam<QuantizeParam> {
class VP9QuantizeBase {
public:
virtual ~VP9QuantizeTest() {}
virtual void SetUp() {
quantize_op_ = GET_PARAM(0);
ref_quantize_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size)
: bit_depth_(bit_depth), max_size_(max_size) {
max_value_ = (1 << bit_depth_) - 1;
zbin_ptr_ =
reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*zbin_ptr_)));
round_ptr_ =
reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*round_ptr_)));
quant_ptr_ =
reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*quant_ptr_)));
quant_shift_ptr_ = reinterpret_cast<int16_t *>(
vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_)));
dequant_ptr_ = reinterpret_cast<int16_t *>(
vpx_memalign(16, 8 * sizeof(*dequant_ptr_)));
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
vpx_bit_depth_t bit_depth_;
int max_value_;
QuantizeFunc quantize_op_;
QuantizeFunc ref_quantize_op_;
};
class VP9Quantize32Test : public ::testing::TestWithParam<QuantizeParam> {
public:
virtual ~VP9Quantize32Test() {}
virtual void SetUp() {
quantize_op_ = GET_PARAM(0);
ref_quantize_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
max_value_ = (1 << bit_depth_) - 1;
~VP9QuantizeBase() {
vpx_free(zbin_ptr_);
vpx_free(round_ptr_);
vpx_free(quant_ptr_);
vpx_free(quant_shift_ptr_);
vpx_free(dequant_ptr_);
zbin_ptr_ = NULL;
round_ptr_ = NULL;
quant_ptr_ = NULL;
quant_shift_ptr_ = NULL;
dequant_ptr_ = NULL;
libvpx_test::ClearSystemState();
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int16_t *zbin_ptr_;
int16_t *round_ptr_;
int16_t *quant_ptr_;
int16_t *quant_shift_ptr_;
int16_t *dequant_ptr_;
const vpx_bit_depth_t bit_depth_;
int max_value_;
const int max_size_;
};
class VP9QuantizeTest : public VP9QuantizeBase,
public ::testing::TestWithParam<QuantizeParam> {
public:
VP9QuantizeTest()
: VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3)), quantize_op_(GET_PARAM(0)),
ref_quantize_op_(GET_PARAM(1)) {}
protected:
vpx_bit_depth_t bit_depth_;
int max_value_;
QuantizeFunc quantize_op_;
QuantizeFunc ref_quantize_op_;
const QuantizeFunc quantize_op_;
const QuantizeFunc ref_quantize_op_;
};
void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round,
int16_t *quant, int16_t *quant_shift,
int16_t *dequant) {
for (int j = 0; j < 2; j++) {
// Values determined by deconstructing vp9_init_quantizer().
// zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y
// values or U/V values of any bit depth. This is because y_delta is not
// factored into the vp9_ac_quant() call.
zbin[j] = rnd->RandRange(1200);
// round may be up to 685 for Y values or 914 for U/V.
round[j] = rnd->RandRange(914);
// quant ranges from 1 to -32703
quant[j] = static_cast<int>(rnd->RandRange(32704)) - 32703;
// quant_shift goes up to 1 << 16.
quant_shift[j] = rnd->RandRange(16384);
// dequant maxes out at 1828 for all cases.
dequant[j] = rnd->RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin[j] = zbin[1];
round[j] = round[1];
quant[j] = quant[1];
quant_shift[j] = quant_shift[1];
dequant[j] = dequant[1];
}
}
TEST_P(VP9QuantizeTest, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(16, 16, 0, 16);
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(16, 16, 0);
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(16, 16, 0);
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
const int skip_block = i == 0;
const TX_SIZE sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
TX_SIZE sz;
if (max_size_ == 16) {
sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
} else {
sz = TX_32X32;
}
const TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
const int count = (4 << sz) * (4 << sz); // 16, 64, 256
coeff.Set(&rnd, 0, max_value_);
for (int j = 0; j < 2; j++) {
// Values determined by deconstructing vp9_init_quantizer().
// zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y
// values or U/V values of any bit depth. This is because y_delta is not
// factored into the vp9_ac_quant() call.
zbin_ptr[j] = rnd.RandRange(1200);
// round may be up to 685 for Y values or 914 for U/V.
round_ptr[j] = rnd.RandRange(914);
// quant ranges from 1 to -32703
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
// quant_shift goes up to 1 << 16.
quant_shift_ptr[j] = rnd.RandRange(16384);
// dequant maxes out at 1828 for all cases.
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
quant_shift_ptr_, dequant_ptr_);
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
TEST_P(VP9Quantize32Test, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(32, 32, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
const int skip_block = i == 0;
const TX_SIZE sz = TX_32X32;
const TX_TYPE tx_type = (TX_TYPE)(i % 4);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
const int count = (4 << sz) * (4 << sz); // 1024
coeff.Set(&rnd, 0, max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_,
round_ptr_, quant_ptr_, quant_shift_ptr_,
ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr_, &ref_eob, scan_order->scan,
scan_order->iscan);
ASM_REGISTER_STATE_CHECK(
quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_,
round_ptr_, quant_ptr_, quant_shift_ptr_,
qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr_, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
@ -219,26 +182,26 @@ TEST_P(VP9Quantize32Test, OperationCheck) {
TEST_P(VP9QuantizeTest, EOBCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(16, 16, 0, 16);
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(16, 16, 0);
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(16, 16, 0);
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
int skip_block = i == 0;
TX_SIZE sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
TX_SIZE sz;
if (max_size_ == 16) {
sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
} else {
sz = TX_32X32;
}
TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
int count = (4 << sz) * (4 << sz); // 16, 64, 256
@ -246,96 +209,19 @@ TEST_P(VP9QuantizeTest, EOBCheck) {
coeff.Set(0);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
quant_shift_ptr_, dequant_ptr_);
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
TEST_P(VP9Quantize32Test, EOBCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(32, 32, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
int skip_block = i == 0;
TX_SIZE sz = TX_32X32;
TX_TYPE tx_type = (TX_TYPE)(i % 4);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
int count = (4 << sz) * (4 << sz); // 1024
coeff.Set(0);
// Two random entries
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_,
round_ptr_, quant_ptr_, quant_shift_ptr_,
ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr_, &ref_eob, scan_order->scan,
scan_order->iscan);
ASM_REGISTER_STATE_CHECK(
quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_,
round_ptr_, quant_ptr_, quant_shift_ptr_,
qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr_, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
@ -353,21 +239,26 @@ TEST_P(VP9Quantize32Test, EOBCheck) {
TEST_P(VP9QuantizeTest, DISABLED_Speed) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(16, 16, 0, 16);
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
uint16_t eob;
int starting_sz, ending_sz;
// TX_4X4, TX_8X8 TX_16X16
for (TX_SIZE sz = 0; sz < 3; ++sz) {
if (max_size_ == 16) {
// TX_4X4, TX_8X8 TX_16X16
starting_sz = 0;
ending_sz = 2;
} else {
// TX_32X32
starting_sz = 3;
ending_sz = 3;
}
for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) {
// skip_block, zbin > coeff, zbin < coeff.
for (int i = 0; i < 3; ++i) {
const int skip_block = i == 0;
@ -376,40 +267,30 @@ TEST_P(VP9QuantizeTest, DISABLED_Speed) {
const TX_TYPE tx_type = DCT_DCT;
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
const int count = (4 << sz) * (4 << sz); // 16, 64, 256
GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_,
quant_shift_ptr_, dequant_ptr_);
if (i == 0) {
// zbin values are unused when skip_block == 1.
zbin_ptr[0] = zbin_ptr[1] = 0;
zbin_ptr_[0] = zbin_ptr_[1] = 0;
coeff.Set(0);
} else if (i == 1) {
// When |coeff values| are less than zbin the results are 0.
zbin_ptr[0] = zbin_ptr[1] = 100;
zbin_ptr_[0] = zbin_ptr_[1] = 100;
coeff.Set(&rnd, -99, 99);
} else if (i == 2) {
zbin_ptr[0] = zbin_ptr[1] = 50;
zbin_ptr_[0] = zbin_ptr_[1] = 50;
coeff.Set(&rnd, -500, 500);
}
for (int j = 0; j < 2; j++) {
// Chosen by fair dice roll.
round_ptr[j] = 10;
quant_ptr[j] = -10;
quant_shift_ptr[j] = 10;
dequant_ptr[j] = 10;
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
for (int j = 0; j < 100000000 / count; ++j) {
quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr,
round_ptr, quant_ptr, quant_shift_ptr,
qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr,
&eob, scan_order->scan, scan_order->iscan);
quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_,
round_ptr_, quant_ptr_, quant_shift_ptr_,
qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr_, &eob, scan_order->scan, scan_order->iscan);
}
vpx_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer));
@ -431,39 +312,35 @@ using std::tr1::make_tuple;
// make_tuple(&vpx_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8),
INSTANTIATE_TEST_CASE_P(
SSE2, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_8),
make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_10),
make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_12)));
INSTANTIATE_TEST_CASE_P(
SSE2, VP9Quantize32Test,
::testing::Values(make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_8),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_10),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_12)));
::testing::Values(
make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
VPX_BITS_8, 16),
make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
VPX_BITS_10, 16),
make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c,
VPX_BITS_12, 16),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32)));
#else
INSTANTIATE_TEST_CASE_P(SSE2, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_sse2,
&vpx_quantize_b_c,
VPX_BITS_8)));
VPX_BITS_8, 16)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_SSE2
// TODO(johannkoenig): SSSE3 optimizations do not yet pass these tests.
#if HAVE_SSSE3 && ARCH_X86_64
INSTANTIATE_TEST_CASE_P(DISABLED_SSSE3, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_ssse3,
&vpx_quantize_b_c,
VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(
DISABLED_SSSE3, VP9Quantize32Test,
::testing::Values(make_tuple(&vpx_quantize_b_32x32_ssse3,
&vpx_quantize_b_32x32_c, VPX_BITS_8)));
DISABLED_SSSE3, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c,
VPX_BITS_8, 16),
make_tuple(&vpx_quantize_b_32x32_ssse3,
&vpx_quantize_b_32x32_c, VPX_BITS_8, 32)));
#endif // HAVE_SSSE3 && ARCH_X86_64
// TODO(johannkoenig): AVX optimizations do not yet pass the 32x32 test or
@ -472,12 +349,11 @@ INSTANTIATE_TEST_CASE_P(
INSTANTIATE_TEST_CASE_P(AVX, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_avx,
&vpx_quantize_b_c,
VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(DISABLED_AVX, VP9Quantize32Test,
VPX_BITS_8, 16)));
INSTANTIATE_TEST_CASE_P(DISABLED_AVX, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_32x32_avx,
&vpx_quantize_b_32x32_c,
VPX_BITS_8)));
VPX_BITS_8, 32)));
#endif // HAVE_AVX && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH
// TODO(webm:1448): dqcoeff is not handled correctly in HBD builds.
@ -485,12 +361,12 @@ INSTANTIATE_TEST_CASE_P(DISABLED_AVX, VP9Quantize32Test,
INSTANTIATE_TEST_CASE_P(NEON, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_neon,
&vpx_quantize_b_c,
VPX_BITS_8)));
VPX_BITS_8, 16)));
#endif // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH
// Only useful to compare "Speed" test results.
INSTANTIATE_TEST_CASE_P(DISABLED_C, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_c,
&vpx_quantize_b_c,
VPX_BITS_8)));
VPX_BITS_8, 16)));
} // namespace