Rewrite vpx_highbd_idct8x8_{12,64}_add_sse2

This replaces commit aa1c4cd, which has a bug and was reverted in
commit 3c73e58.

The bug is caused by rounding -step1[5] in highbd_idct8x8_12_half1d().

Change-Id: I37b3a5f0d91815f2dc570209091dc6626fd178a8
This commit is contained in:
Linfeng Zhang 2017-07-31 16:36:13 -07:00
parent 78e2da3e42
commit bf14d468c1
2 changed files with 204 additions and 180 deletions

View File

@ -8,211 +8,218 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include <emmintrin.h> // SSE2
#include "./vpx_dsp_rtcd.h" #include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" #include "vpx_dsp/x86/highbd_inv_txfm_sse2.h"
#include "vpx_dsp/x86/inv_txfm_sse2.h" #include "vpx_dsp/x86/inv_txfm_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
static void highbd_idct8x8_half1d(__m128i *const io) {
__m128i temp1[4], temp2[4], sign[2], step1[8], step2[8];
transpose_32bit_4x4x2(io, io);
// stage 1
step1[0] = io[0];
step1[2] = io[4];
step1[1] = io[2];
step1[3] = io[6];
highbd_multiplication_and_add_sse2(io[1], io[7], (int)cospi_28_64,
(int)cospi_4_64, &step1[4], &step1[7]);
highbd_multiplication_and_add_sse2(io[5], io[3], (int)cospi_12_64,
(int)cospi_20_64, &step1[5], &step1[6]);
// stage 2
temp2[0] = _mm_add_epi32(step1[0], step1[2]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step2[0] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2[0] = _mm_sub_epi32(step1[0], step1[2]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step2[1] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
highbd_multiplication_and_add_sse2(step1[1], step1[3], (int)cospi_24_64,
(int)cospi_8_64, &step2[2], &step2[3]);
step2[4] = _mm_add_epi32(step1[4], step1[5]);
step2[5] = _mm_sub_epi32(step1[4], step1[5]);
step2[6] = _mm_sub_epi32(step1[7], step1[6]);
step2[7] = _mm_add_epi32(step1[7], step1[6]);
// stage 3
step1[0] = _mm_add_epi32(step2[0], step2[3]);
step1[1] = _mm_add_epi32(step2[1], step2[2]);
step1[2] = _mm_sub_epi32(step2[1], step2[2]);
step1[3] = _mm_sub_epi32(step2[0], step2[3]);
step1[4] = step2[4];
temp2[0] = _mm_sub_epi32(step2[6], step2[5]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step1[5] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2[0] = _mm_add_epi32(step2[6], step2[5]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step1[6] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
step1[7] = step2[7];
// stage 4
highbd_idct8_stage4(step1, io);
}
static void highbd_idct8x8_12_half1d(__m128i *const io) {
__m128i temp1[4], temp2[4], sign[2], step1[8], step2[8];
transpose_32bit_4x4(io, io);
// stage 1
step1[0] = io[0];
step1[1] = io[2];
abs_extend_64bit_sse2(io[1], temp1, sign);
step1[4] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_28_64);
step1[7] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_4_64);
abs_extend_64bit_sse2(io[3], temp1, sign);
step1[5] = multiplication_neg_round_shift_sse2(temp1, sign, (int)cospi_20_64);
step1[6] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_12_64);
// stage 2
abs_extend_64bit_sse2(step1[0], temp1, sign);
step2[0] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
abs_extend_64bit_sse2(step1[1], temp1, sign);
step2[2] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_24_64);
step2[3] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_8_64);
step2[4] = _mm_add_epi32(step1[4], step1[5]);
step2[5] = _mm_sub_epi32(step1[4], step1[5]);
step2[6] = _mm_sub_epi32(step1[7], step1[6]);
step2[7] = _mm_add_epi32(step1[7], step1[6]);
// stage 3
step1[0] = _mm_add_epi32(step2[0], step2[3]);
step1[1] = _mm_add_epi32(step2[0], step2[2]);
step1[2] = _mm_sub_epi32(step2[0], step2[2]);
step1[3] = _mm_sub_epi32(step2[0], step2[3]);
step1[4] = step2[4];
temp2[0] = _mm_sub_epi32(step2[6], step2[5]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step1[5] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
temp2[0] = _mm_add_epi32(step2[6], step2[5]);
abs_extend_64bit_sse2(temp2[0], temp1, sign);
step1[6] = multiplication_round_shift_sse2(temp1, sign, (int)cospi_16_64);
step1[7] = step2[7];
// stage 4
highbd_idct8_stage4(step1, io);
}
void vpx_highbd_idct8x8_64_add_sse2(const tran_low_t *input, uint16_t *dest, void vpx_highbd_idct8x8_64_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) { int stride, int bd) {
tran_low_t out[8 * 8]; __m128i io[16];
tran_low_t *outptr = out;
int i, j, test;
__m128i inptr[8];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i sixteen = _mm_set1_epi16(16);
const __m128i max = _mm_set1_epi16(6201);
const __m128i min = _mm_set1_epi16(-6201);
int optimised_cols = 0;
// Load input into __m128i & pack to 16 bits io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0));
for (i = 0; i < 8; i++) { io[4] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 4));
temp1 = _mm_loadu_si128((const __m128i *)(input + 8 * i)); io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0));
temp2 = _mm_loadu_si128((const __m128i *)(input + 8 * i + 4)); io[5] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 4));
inptr[i] = _mm_packs_epi32(temp1, temp2); io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0));
} io[6] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 4));
io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0));
io[7] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 4));
// Find the min & max for the row transform if (bd == 8) {
max_input = _mm_max_epi16(inptr[0], inptr[1]); __m128i io_short[8];
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 8; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (!test) { io_short[0] = _mm_packs_epi32(io[0], io[4]);
// Do the row transform io_short[1] = _mm_packs_epi32(io[1], io[5]);
idct8_sse2(inptr); io_short[2] = _mm_packs_epi32(io[2], io[6]);
io_short[3] = _mm_packs_epi32(io[3], io[7]);
io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0));
io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4));
io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0));
io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4));
io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0));
io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4));
io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0));
io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4));
io_short[4] = _mm_packs_epi32(io[8], io[12]);
io_short[5] = _mm_packs_epi32(io[9], io[13]);
io_short[6] = _mm_packs_epi32(io[10], io[14]);
io_short[7] = _mm_packs_epi32(io[11], io[15]);
// Find the min & max for the column transform idct8_sse2(io_short);
max_input = _mm_max_epi16(inptr[0], inptr[1]); idct8_sse2(io_short);
min_input = _mm_min_epi16(inptr[0], inptr[1]); round_shift_8x8(io_short, io);
for (i = 2; i < 8; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (test) {
transpose_16bit_8x8(inptr, inptr);
for (i = 0; i < 8; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits);
temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i + 1)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i)), temp2);
}
} else { } else {
// Set to use the optimised transform for the column __m128i temp[4];
optimised_cols = 1;
} highbd_idct8x8_half1d(io);
} else {
// Run the un-optimised row transform io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0));
for (i = 0; i < 8; ++i) { io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4));
vpx_highbd_idct8_c(input, outptr, bd); io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0));
input += 8; io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4));
outptr += 8; io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0));
} io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4));
io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0));
io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4));
highbd_idct8x8_half1d(&io[8]);
temp[0] = io[4];
temp[1] = io[5];
temp[2] = io[6];
temp[3] = io[7];
io[4] = io[8];
io[5] = io[9];
io[6] = io[10];
io[7] = io[11];
highbd_idct8x8_half1d(io);
io[8] = temp[0];
io[9] = temp[1];
io[10] = temp[2];
io[11] = temp[3];
highbd_idct8x8_half1d(&io[8]);
highbd_idct8x8_final_round(io);
} }
if (optimised_cols) { recon_and_store_8(io, dest, stride, bd);
idct8_sse2(inptr);
// Final round & shift and Reconstruction and Store
{
__m128i d[8];
for (i = 0; i < 8; i++) {
inptr[i] = _mm_add_epi16(inptr[i], sixteen);
d[i] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
inptr[i] = _mm_srai_epi16(inptr[i], 5);
d[i] = add_clamp(d[i], inptr[i], bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[i]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[8], temp_out[8];
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i];
vpx_highbd_idct8_c(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
} }
void vpx_highbd_idct8x8_12_add_sse2(const tran_low_t *input, uint16_t *dest, void vpx_highbd_idct8x8_12_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) { int stride, int bd) {
tran_low_t out[8 * 8] = { 0 }; const __m128i zero = _mm_setzero_si128();
tran_low_t *outptr = out; __m128i io[16];
int i, j, test;
__m128i inptr[8];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i sixteen = _mm_set1_epi16(16);
const __m128i max = _mm_set1_epi16(6201);
const __m128i min = _mm_set1_epi16(-6201);
int optimised_cols = 0;
// Load input into __m128i & pack to 16 bits io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0));
for (i = 0; i < 8; i++) { io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0));
temp1 = _mm_loadu_si128((const __m128i *)(input + 8 * i)); io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0));
temp2 = _mm_loadu_si128((const __m128i *)(input + 8 * i + 4)); io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0));
inptr[i] = _mm_packs_epi32(temp1, temp2);
}
// Find the min & max for the row transform if (bd == 8) {
// only first 4 row has non-zero coefs __m128i io_short[8];
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 4; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (!test) { io_short[0] = _mm_packs_epi32(io[0], zero);
// Do the row transform io_short[1] = _mm_packs_epi32(io[1], zero);
idct8_sse2(inptr); io_short[2] = _mm_packs_epi32(io[2], zero);
io_short[3] = _mm_packs_epi32(io[3], zero);
// Find the min & max for the column transform idct8x8_12_add_kernel_sse2(io_short);
// N.B. Only first 4 cols contain non-zero coeffs round_shift_8x8(io_short, io);
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 8; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (test) {
// Use fact only first 4 rows contain non-zero coeffs
transpose_16bit_4x8(inptr, inptr);
for (i = 0; i < 4; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits);
temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i + 1)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i)), temp2);
}
} else { } else {
// Set to use the optimised transform for the column __m128i temp[4];
optimised_cols = 1;
} highbd_idct8x8_12_half1d(io);
} else {
// Run the un-optimised row transform temp[0] = io[4];
for (i = 0; i < 4; ++i) { temp[1] = io[5];
vpx_highbd_idct8_c(input, outptr, bd); temp[2] = io[6];
input += 8; temp[3] = io[7];
outptr += 8; highbd_idct8x8_12_half1d(io);
}
io[8] = temp[0];
io[9] = temp[1];
io[10] = temp[2];
io[11] = temp[3];
highbd_idct8x8_12_half1d(&io[8]);
highbd_idct8x8_final_round(io);
} }
if (optimised_cols) { recon_and_store_8(io, dest, stride, bd);
idct8_sse2(inptr);
// Final round & shift and Reconstruction and Store
{
__m128i d[8];
for (i = 0; i < 8; i++) {
inptr[i] = _mm_add_epi16(inptr[i], sixteen);
d[i] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
inptr[i] = _mm_srai_epi16(inptr[i], 5);
d[i] = add_clamp(d[i], inptr[i], bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[i]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[8], temp_out[8];
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i];
vpx_highbd_idct8_c(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
} }
void vpx_highbd_idct8x8_1_add_sse2(const tran_low_t *input, uint16_t *dest, void vpx_highbd_idct8x8_1_add_sse2(const tran_low_t *input, uint16_t *dest,

View File

@ -92,6 +92,23 @@ static INLINE __m128i multiplication_round_shift_sse2(
return pack_4(t0, t1); return pack_4(t0, t1);
} }
// Note: c must be non negative.
static INLINE __m128i multiplication_neg_round_shift_sse2(
const __m128i *const in /*in[2]*/, const __m128i *const sign /*sign[2]*/,
const int c) {
const __m128i pair_c = pair_set_epi32(c << 2, 0);
__m128i t0, t1;
t0 = multiply_apply_sign_sse2(in[0], sign[0], pair_c);
t1 = multiply_apply_sign_sse2(in[1], sign[1], pair_c);
t0 = _mm_sub_epi64(_mm_setzero_si128(), t0);
t1 = _mm_sub_epi64(_mm_setzero_si128(), t1);
t0 = dct_const_round_shift_64bit(t0);
t1 = dct_const_round_shift_64bit(t1);
return pack_4(t0, t1);
}
// Note: c0 and c1 must be non negative. // Note: c0 and c1 must be non negative.
static INLINE void highbd_multiplication_and_add_sse2( static INLINE void highbd_multiplication_and_add_sse2(
const __m128i in0, const __m128i in1, const int c0, const int c1, const __m128i in0, const __m128i in1, const int c0, const int c1,