diff --git a/vp9/common/vp9_loopfilter.c b/vp9/common/vp9_loopfilter.c index cb90502c1..cfa61c20b 100644 --- a/vp9/common/vp9_loopfilter.c +++ b/vp9/common/vp9_loopfilter.c @@ -22,6 +22,210 @@ struct loop_filter_info { const uint8_t *hev_thr; }; +// This structure holds bit masks for all 8x8 blocks in a 64x64 region. +// Each 1 bit represents a position in which we want to apply the loop filter. +// Left_ entries refer to whether we apply a filter on the border to the +// left of the block. Above_ entries refer to whether or not to apply a +// filter on the above border. Int_ entries refer to whether or not to +// apply borders on the 4x4 edges within the 8x8 block that each bit +// represents. +// Since each transform is accompanied by a potentially different type of +// loop filter there is a different entry in the array for each transform size. +typedef struct { + uint64_t left_y[TX_SIZES]; + uint64_t above_y[TX_SIZES]; + uint64_t int_4x4_y; + uint16_t left_uv[TX_SIZES]; + uint16_t above_uv[TX_SIZES]; + uint16_t int_4x4_uv; +} LOOP_FILTER_MASK; + +// 64 bit masks for left transform size. Each 1 represents a position where +// we should apply a loop filter across the left border of an 8x8 block +// boundary. +// +// In the case of TX_16X16-> ( in low order byte first we end up with +// a mask that looks like this +// +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// +// A loopfilter should be applied to every other 8x8 horizontally. +static const uint64_t left_64x64_txform_mask[TX_SIZES]= { + 0xffffffffffffffff, // TX_4X4 + 0xffffffffffffffff, // TX_8x8 + 0x5555555555555555, // TX_16x16 + 0x1111111111111111, // TX_32x32 +}; + +// 64 bit masks for above transform size. Each 1 represents a position where +// we should apply a loop filter across the top border of an 8x8 block +// boundary. +// +// In the case of TX_32x32 -> ( in low order byte first we end up with +// a mask that looks like this +// +// 11111111 +// 00000000 +// 00000000 +// 00000000 +// 11111111 +// 00000000 +// 00000000 +// 00000000 +// +// A loopfilter should be applied to every other 4 the row vertically. +static const uint64_t above_64x64_txform_mask[TX_SIZES]= { + 0xffffffffffffffff, // TX_4X4 + 0xffffffffffffffff, // TX_8x8 + 0x00ff00ff00ff00ff, // TX_16x16 + 0x000000ff000000ff, // TX_32x32 +}; + +// 64 bit masks for prediction sizes (left). Each 1 represents a position +// where left border of an 8x8 block. These are aligned to the right most +// appropriate bit, and then shifted into place. +// +// In the case of TX_16x32 -> ( low order byte first ) we end up with +// a mask that looks like this : +// +// 10000000 +// 10000000 +// 10000000 +// 10000000 +// 00000000 +// 00000000 +// 00000000 +// 00000000 +static const uint64_t left_prediction_mask[BLOCK_SIZES] = { + 0x0000000000000001, // BLOCK_4X4, + 0x0000000000000001, // BLOCK_4X8, + 0x0000000000000001, // BLOCK_8X4, + 0x0000000000000001, // BLOCK_8X8, + 0x0000000000000101, // BLOCK_8X16, + 0x0000000000000001, // BLOCK_16X8, + 0x0000000000000101, // BLOCK_16X16, + 0x0000000001010101, // BLOCK_16X32, + 0x0000000000000101, // BLOCK_32X16, + 0x0000000001010101, // BLOCK_32X32, + 0x0101010101010101, // BLOCK_32X64, + 0x0000000001010101, // BLOCK_64X32, + 0x0101010101010101, // BLOCK_64X64 +}; + +// 64 bit mask to shift and set for each prediction size. +static const uint64_t above_prediction_mask[BLOCK_SIZES] = { + 0x0000000000000001, // BLOCK_4X4 + 0x0000000000000001, // BLOCK_4X8 + 0x0000000000000001, // BLOCK_8X4 + 0x0000000000000001, // BLOCK_8X8 + 0x0000000000000001, // BLOCK_8X16, + 0x0000000000000003, // BLOCK_16X8 + 0x0000000000000003, // BLOCK_16X16 + 0x0000000000000003, // BLOCK_16X32, + 0x000000000000000f, // BLOCK_32X16, + 0x000000000000000f, // BLOCK_32X32, + 0x000000000000000f, // BLOCK_32X64, + 0x00000000000000ff, // BLOCK_64X32, + 0x00000000000000ff, // BLOCK_64X64 +}; +// 64 bit mask to shift and set for each prediction size. A bit is set for +// each 8x8 block that would be in the left most block of the given block +// size in the 64x64 block. +static const uint64_t size_mask[BLOCK_SIZES] = { + 0x0000000000000001, // BLOCK_4X4 + 0x0000000000000001, // BLOCK_4X8 + 0x0000000000000001, // BLOCK_8X4 + 0x0000000000000001, // BLOCK_8X8 + 0x0000000000000101, // BLOCK_8X16, + 0x0000000000000003, // BLOCK_16X8 + 0x0000000000000303, // BLOCK_16X16 + 0x0000000003030303, // BLOCK_16X32, + 0x0000000000000f0f, // BLOCK_32X16, + 0x000000000f0f0f0f, // BLOCK_32X32, + 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64, + 0x00000000ffffffff, // BLOCK_64X32, + 0xffffffffffffffff, // BLOCK_64X64 +}; + +// These are used for masking the left and above borders. +static const uint64_t left_border = 0x1111111111111111; +static const uint64_t above_border = 0x000000ff000000ff; + +// 16 bit masks for uv transform sizes. +static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= { + 0xffff, // TX_4X4 + 0xffff, // TX_8x8 + 0x5555, // TX_16x16 + 0x1111, // TX_32x32 +}; + +static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= { + 0xffff, // TX_4X4 + 0xffff, // TX_8x8 + 0x0f0f, // TX_16x16 + 0x000f, // TX_32x32 +}; + +// 16 bit left mask to shift and set for each uv prediction size. +static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4, + 0x0001, // BLOCK_4X8, + 0x0001, // BLOCK_8X4, + 0x0001, // BLOCK_8X8, + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8, + 0x0001, // BLOCK_16X16, + 0x0011, // BLOCK_16X32, + 0x0001, // BLOCK_32X16, + 0x0011, // BLOCK_32X32, + 0x1111, // BLOCK_32X64 + 0x0011, // BLOCK_64X32, + 0x1111, // BLOCK_64X64 +}; +// 16 bit above mask to shift and set for uv each prediction size. +static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4 + 0x0001, // BLOCK_4X8 + 0x0001, // BLOCK_8X4 + 0x0001, // BLOCK_8X8 + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8 + 0x0001, // BLOCK_16X16 + 0x0001, // BLOCK_16X32, + 0x0003, // BLOCK_32X16, + 0x0003, // BLOCK_32X32, + 0x0003, // BLOCK_32X64, + 0x000f, // BLOCK_64X32, + 0x000f, // BLOCK_64X64 +}; + +// 64 bit mask to shift and set for each uv prediction size +static const uint16_t size_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4 + 0x0001, // BLOCK_4X8 + 0x0001, // BLOCK_8X4 + 0x0001, // BLOCK_8X8 + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8 + 0x0001, // BLOCK_16X16 + 0x0011, // BLOCK_16X32, + 0x0003, // BLOCK_32X16, + 0x0033, // BLOCK_32X32, + 0x3333, // BLOCK_32X64, + 0x00ff, // BLOCK_64X32, + 0xffff, // BLOCK_64X64 +}; +static const uint16_t left_border_uv = 0x1111; +static const uint16_t above_border_uv = 0x000f; + + static void lf_init_lut(loop_filter_info_n *lfi) { lfi->mode_lf_lut[DC_PRED] = 0; lfi->mode_lf_lut[D45_PRED] = 0; @@ -236,10 +440,347 @@ static void filter_selectively_horiz(uint8_t *s, int pitch, } } -static void filter_block_plane(VP9_COMMON *cm, - struct macroblockd_plane *plane, - const MODE_INFO *mi, - int mi_row, int mi_col) { +// This function ors into the current lfm structure, where to do loop +// filters for the specific mi we are looking at. It uses information +// including the block_size_type (32x16, 32x32, etc), the transform size, +// whether there were any coefficients encoded, and the loop filter strength +// block we are currently looking at. Shift is used to position the +// 1's we produce. +// TODO(JBB) Need another function for different resolution color.. +static void build_masks(const loop_filter_info_n *const lfi_n, + const MODE_INFO *mi, const int shift_y, + const int shift_uv, + LOOP_FILTER_MASK *lfm) { + const BLOCK_SIZE block_size = mi->mbmi.sb_type; + const TX_SIZE tx_size_y = mi->mbmi.tx_size; + const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi); + const int skip = mi->mbmi.skip_coeff; + const int seg = mi->mbmi.segment_id; + const int ref = mi->mbmi.ref_frame[0]; + const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; + const int filter_level = lfi_n->lvl[seg][ref][mode]; + uint64_t *left_y = &lfm->left_y[tx_size_y]; + uint64_t *above_y = &lfm->above_y[tx_size_y]; + uint64_t *int_4x4_y = &lfm->int_4x4_y; + uint16_t *left_uv = &lfm->left_uv[tx_size_uv]; + uint16_t *above_uv = &lfm->above_uv[tx_size_uv]; + uint16_t *int_4x4_uv = &lfm->int_4x4_uv; + + // If filter level is 0 we don't loop filter. + if (!filter_level) + return; + + // These set 1 in the current block size for the block size edges. + // For instance if the block size is 32x16, we'll set : + // above = 1111 + // 0000 + // and + // left = 1000 + // = 1000 + // NOTE : In this example the low bit is left most ( 1000 ) is stored as + // 1, not 8... + // + // U and v set things on a 16 bit scale. + // + *above_y |= above_prediction_mask[block_size] << shift_y; + *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; + *left_y |= left_prediction_mask[block_size] << shift_y; + *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; + + // If the block has no coefficients and is not intra we skip applying + // the loop filter on block edges. + if (skip && ref > INTRA_FRAME) + return; + + // Here we are adding a mask for the transform size. The transform + // size mask is set to be correct for a 64x64 prediction block size. We + // mask to match the size of the block we are working on and then shift it + // into place.. + *above_y |= (size_mask[block_size] & + above_64x64_txform_mask[tx_size_y]) << shift_y; + *above_uv |= (size_mask_uv[block_size] & + above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; + + *left_y |= (size_mask[block_size] & + left_64x64_txform_mask[tx_size_y]) << shift_y; + *left_uv |= (size_mask_uv[block_size] & + left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; + + // Here we are trying to determine what to do with the internal 4x4 block + // boundaries. These differ from the 4x4 boundaries on the outside edge of + // an 8x8 in that the internal ones can be skipped and don't depend on + // the prediction block size. + if (tx_size_y == TX_4X4) { + *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; + } + if (tx_size_uv == TX_4X4) { + *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; + } +} + +// This function does the same thing as the one above with the exception that +// it only affects the y masks. It exists because for blocks < 16x16 in size, +// we only update u and v masks on the first block. +static void build_y_mask(const loop_filter_info_n *const lfi_n, + const MODE_INFO *mi, const int shift_y, + LOOP_FILTER_MASK *lfm) { + const BLOCK_SIZE block_size = mi->mbmi.sb_type; + const TX_SIZE tx_size_y = mi->mbmi.tx_size; + const int skip = mi->mbmi.skip_coeff; + const int seg = mi->mbmi.segment_id; + const int ref = mi->mbmi.ref_frame[0]; + const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; + const int filter_level = lfi_n->lvl[seg][ref][mode]; + uint64_t *left_y = &lfm->left_y[tx_size_y]; + uint64_t *above_y = &lfm->above_y[tx_size_y]; + uint64_t *int_4x4_y = &lfm->int_4x4_y; + + if (!filter_level) + return; + + *above_y |= above_prediction_mask[block_size] << shift_y; + *left_y |= left_prediction_mask[block_size] << shift_y; + + if (skip && ref > INTRA_FRAME) + return; + + *above_y |= (size_mask[block_size] & + above_64x64_txform_mask[tx_size_y]) << shift_y; + + *left_y |= (size_mask[block_size] & + left_64x64_txform_mask[tx_size_y]) << shift_y; + + if (tx_size_y == TX_4X4) { + *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; + } +} + +// This function sets up the bit masks for the entire 64x64 region represented +// by mi_row, mi_col. +// TODO(JBB): This function only works for yv12. +static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, + const MODE_INFO *mi, const int mode_info_stride, + LOOP_FILTER_MASK *lfm) { + int idx_32, idx_16, idx_8; + const loop_filter_info_n *const lfi_n = &cm->lf_info; + const MODE_INFO *mip = mi; + const MODE_INFO *mip2 = mi; + + // These are offsets to the next mi in the 64x64 block. It is what gets + // added to the mi ptr as we go through each loop. It helps us to avoids + // setting up special row and column counters for each index. The last step + // brings us out back to the starting position. + const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4, + -(mode_info_stride << 2) - 4}; + const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2, + -(mode_info_stride << 1) - 2}; + const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1}; + + // Following variables represent shifts to position the current block + // mask over the appropriate block. A shift of 36 to the left will move + // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left + // 4 rows to the appropriate spot. + const int shift_32_y[] = {0, 4, 32, 36}; + const int shift_16_y[] = {0, 2, 16, 18}; + const int shift_8_y[] = {0, 1, 8, 9}; + const int shift_32_uv[] = {0, 2, 8, 10}; + const int shift_16_uv[] = {0, 1, 4, 5}; + int i; + const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? + cm->mi_rows - mi_row : MI_BLOCK_SIZE); + const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? + cm->mi_cols - mi_col : MI_BLOCK_SIZE); + + vp9_zero(*lfm); + + // TODO(jimbankoski): Try moving most of the following code into decode + // loop and storing lfm in the mbmi structure so that we don't have to go + // through the recursive loop structure multiple times. + switch (mip->mbmi.sb_type) { + case BLOCK_64X64: + build_masks(lfi_n, mip , 0, 0, lfm); + break; + case BLOCK_64X32: + build_masks(lfi_n, mip, 0, 0, lfm); + mip2 = mip + mode_info_stride * 4; + build_masks(lfi_n, mip2 , 32, 8, lfm); + break; + case BLOCK_32X64: + build_masks(lfi_n, mip, 0, 0, lfm); + mip2 = mip + 4; + build_masks(lfi_n, mip2, 4, 2, lfm); + break; + default: + for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { + const int shift_y = shift_32_y[idx_32]; + const int shift_uv = shift_32_uv[idx_32]; + const int mi_32_col_offset = ((idx_32 & 1) << 2); + const int mi_32_row_offset = ((idx_32 >> 1) << 2); + if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) + continue; + switch (mip->mbmi.sb_type) { + case BLOCK_32X32: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + break; + case BLOCK_32X16: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + mip2 = mip + mode_info_stride * 2; + build_masks(lfi_n, mip2, shift_y + 16, shift_uv + 4, lfm); + break; + case BLOCK_16X32: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + mip2 = mip + 2; + build_masks(lfi_n, mip2, shift_y + 2, shift_uv + 1, lfm); + break; + default: + for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { + const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16]; + const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16]; + const int mi_16_col_offset = mi_32_col_offset + + ((idx_16 & 1) << 1); + const int mi_16_row_offset = mi_32_row_offset + + ((idx_16 >> 1) << 1); + + if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) + continue; + + switch (mip->mbmi.sb_type) { + case BLOCK_16X16: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + break; + case BLOCK_16X8: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + mip2 = mip + mode_info_stride; + build_y_mask(lfi_n, mip2, shift_y+8, lfm); + break; + case BLOCK_8X16: + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + mip2 = mip + 1; + build_y_mask(lfi_n, mip2, shift_y+1, lfm); + break; + default: { + const int shift_y = shift_32_y[idx_32] + + shift_16_y[idx_16] + + shift_8_y[0]; + build_masks(lfi_n, mip, shift_y, shift_uv, lfm); + mip += offset[0]; + for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { + const int shift_y = shift_32_y[idx_32] + + shift_16_y[idx_16] + + shift_8_y[idx_8]; + const int mi_8_col_offset = mi_16_col_offset + + ((idx_8 & 1)); + const int mi_8_row_offset = mi_16_row_offset + + ((idx_8 >> 1)); + + if (mi_8_col_offset >= max_cols || + mi_8_row_offset >= max_rows) + continue; + build_y_mask(lfi_n, mip, shift_y, lfm); + } + break; + } + } + } + break; + } + } + break; + } + // The largest loopfilter we have is 16x16 so we use the 16x16 mask + // for 32x32 transforms also also. + lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; + lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; + lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; + lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; + + // We do at least 8 tap filter on every 32x32 even if the transform size + // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and + // remove it from the 4x4. + lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; + lfm->left_y[TX_4X4] &= ~left_border; + lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; + lfm->above_y[TX_4X4] &= ~above_border; + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; + lfm->left_uv[TX_4X4] &= ~left_border_uv; + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; + lfm->above_uv[TX_4X4] &= ~above_border_uv; + + // We do some special edge handling. + if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) { + const uint64_t rows = cm->mi_rows - mi_row; + + // Each pixel inside the border gets a 1, + const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1); + const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1); + + // Remove values completely outside our border. + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= mask_y; + lfm->above_y[i] &= mask_y; + lfm->left_uv[i] &= mask_uv; + lfm->above_uv[i] &= mask_uv; + } + lfm->int_4x4_y &= mask_y; + lfm->int_4x4_uv &= mask_uv; + + // We don't apply a wide loop filter on the last uv block row. If set + // apply the shorter one instead. + if (rows == 1) { + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; + lfm->above_uv[TX_16X16] = 0; + } + if (rows == 5) { + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; + lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); + } + } + + if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) { + const uint64_t columns = cm->mi_cols - mi_col; + + // Each pixel inside the border gets a 1, the multiply copies the border + // to where we need it. + const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101; + const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; + + // Internal edges are not applied on the last column of the image so + // we mask 1 more for the internal edges + const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; + + // Remove the bits outside the image edge. + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= mask_y; + lfm->above_y[i] &= mask_y; + lfm->left_uv[i] &= mask_uv; + lfm->above_uv[i] &= mask_uv; + } + lfm->int_4x4_y &= mask_y; + lfm->int_4x4_uv &= mask_uv_int; + + // We don't apply a wide loop filter on the last uv column. If set + // apply the shorter one instead. + if (columns == 1) { + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; + lfm->left_uv[TX_16X16] = 0; + } + if (columns == 5) { + lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); + lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); + } + } + // We don't a loop filter on the first column in the image. Mask that out. + if (mi_col == 0) { + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= 0xfefefefefefefefe; + lfm->left_uv[i] &= 0xeeee; + } + } +} +static void filter_block_plane_non420(VP9_COMMON *cm, + struct macroblockd_plane *plane, + const MODE_INFO *mi, + int mi_row, int mi_col) { const int ss_x = plane->subsampling_x; const int ss_y = plane->subsampling_y; const int row_step = 1 << ss_x; @@ -356,11 +897,92 @@ static void filter_block_plane(VP9_COMMON *cm, } } +static void filter_block_plane(VP9_COMMON *const cm, + struct macroblockd_plane *const plane, + const MODE_INFO *mi, + int mi_row, int mi_col, + LOOP_FILTER_MASK *lfm) { + const int ss_x = plane->subsampling_x; + const int ss_y = plane->subsampling_y; + const int row_step = 1 << ss_x; + const int col_step = 1 << ss_y; + const int row_step_stride = cm->mode_info_stride * row_step; + struct buf_2d *const dst = &plane->dst; + uint8_t* const dst0 = dst->buf; + unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; + struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE]; + int r, c; + int row_shift = 3 - ss_x; + int row_mask = 0xff >> (ss_x << 2); + +#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask) + + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { + int r_sampled = r >> ss_x; + + // Determine the vertical edges that need filtering + for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { + if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x))) + continue; + } + if (!plane->plane_type) { + mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y); + // Disable filtering on the leftmost column + filter_selectively_vert(dst->buf, dst->stride, + MASK_ROW(lfm->left_y[TX_16X16]), + MASK_ROW(lfm->left_y[TX_8X8]), + MASK_ROW(lfm->left_y[TX_4X4]), + MASK_ROW(lfm->int_4x4_y), + lfi[r]); + } else { + mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv); + // Disable filtering on the leftmost column + filter_selectively_vert(dst->buf, dst->stride, + MASK_ROW(lfm->left_uv[TX_16X16]), + MASK_ROW(lfm->left_uv[TX_8X8]), + MASK_ROW(lfm->left_uv[TX_4X4]), + MASK_ROW(lfm->int_4x4_uv), + lfi[r]); + } + dst->buf += 8 * dst->stride; + mi += row_step_stride; + } + + // Now do horizontal pass + dst->buf = dst0; + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { + const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; + const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; + int r_sampled = r >> ss_x; + + if (!plane->plane_type) { + filter_selectively_horiz(dst->buf, dst->stride, + MASK_ROW(lfm->above_y[TX_16X16]), + MASK_ROW(lfm->above_y[TX_8X8]), + MASK_ROW(lfm->above_y[TX_4X4]), + MASK_ROW(lfm->int_4x4_y), + mi_row + r == 0, lfi[r]); + } else { + filter_selectively_horiz(dst->buf, dst->stride, + MASK_ROW(lfm->above_uv[TX_16X16]), + MASK_ROW(lfm->above_uv[TX_8X8]), + MASK_ROW(lfm->above_uv[TX_4X4]), + mask_4x4_int_r, + mi_row + r == 0, lfi[r]); + } + dst->buf += 8 * dst->stride; + } +#undef MASK_ROW +} + void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm, MACROBLOCKD *xd, int start, int stop, int y_only) { const int num_planes = y_only ? 1 : MAX_MB_PLANE; int mi_row, mi_col; + LOOP_FILTER_MASK lfm; + int use_420 = y_only || (xd->plane[1].subsampling_y == 1 && + xd->plane[1].subsampling_x == 1); for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride; @@ -369,8 +991,18 @@ void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer, int plane; setup_dst_planes(xd, frame_buffer, mi_row, mi_col); + + // TODO(JBB): Make setup_mask work for non 420. + if (use_420) + setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mode_info_stride, &lfm); + for (plane = 0; plane < num_planes; ++plane) { - filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col); + if (use_420) + filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col, + &lfm); + else + filter_block_plane_non420(cm, &xd->plane[plane], mi + mi_col, + mi_row, mi_col); } } }