Merge "Encoder denoiser performance improvement"

This commit is contained in:
Yunqing Wang 2012-08-31 13:51:30 -07:00 committed by Gerrit Code Review
commit 7e9a519fbb
3 changed files with 136 additions and 212 deletions

View File

@ -23,151 +23,118 @@ static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
/*
* The filtering coefficients used for denoizing are adjusted for static
* blocks, or blocks with very small motion vectors. This is done through
* the motion magnitude parameter.
* The filter function was modified to reduce the computational complexity.
* Step 1:
* Instead of applying tap coefficients for each pixel, we calculated the
* pixel adjustments vs. pixel diff value ahead of time.
* adjustment = filtered_value - current_raw
* = (filter_coefficient * diff + 128) >> 8
* where
* filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
* filter_coefficient += filter_coefficient /
* (3 + motion_magnitude_adjustment);
* filter_coefficient is clamped to 0 ~ 255.
*
* There are currently 2048 possible mapping from absolute difference to
* filter coefficient depending on the motion magnitude. Each mapping is
* in a LUT table. All these tables are staticly allocated but they are only
* filled on their first use.
*
* Each entry is a pair of 16b values, the coefficient and its complement
* to 256. Each of these value should only be 8b but they are 16b wide to
* avoid slow partial register manipulations.
* Step 2:
* The adjustment vs. diff curve becomes flat very quick when diff increases.
* This allowed us to use only several levels to approximate the curve without
* changing the filtering algorithm too much.
* The adjustments were further corrected by checking the motion magnitude.
* The levels used are:
* diff adjustment w/o motion correction adjustment w/ motion correction
* [-255, -16] -6 -7
* [-15, -8] -4 -5
* [-7, -4] -3 -4
* [-3, 3] diff diff
* [4, 7] 3 4
* [8, 15] 4 5
* [16, 255] 6 7
*/
enum {num_motion_magnitude_adjustments = 2048};
static union coeff_pair filter_coeff_LUT[num_motion_magnitude_adjustments][256];
static uint8_t filter_coeff_LUT_initialized[num_motion_magnitude_adjustments] =
{ 0 };
union coeff_pair *vp8_get_filter_coeff_LUT(unsigned int motion_magnitude)
{
union coeff_pair *LUT;
unsigned int motion_magnitude_adjustment = motion_magnitude >> 3;
if (motion_magnitude_adjustment >= num_motion_magnitude_adjustments)
{
motion_magnitude_adjustment = num_motion_magnitude_adjustments - 1;
}
LUT = filter_coeff_LUT[motion_magnitude_adjustment];
if (!filter_coeff_LUT_initialized[motion_magnitude_adjustment])
{
int absdiff;
for (absdiff = 0; absdiff < 256; ++absdiff)
{
unsigned int filter_coefficient;
filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
filter_coefficient += filter_coefficient /
(3 + motion_magnitude_adjustment);
if (filter_coefficient > 255)
{
filter_coefficient = 255;
}
LUT[absdiff].as_short[0] = filter_coefficient ;
LUT[absdiff].as_short[1] = 256 - filter_coefficient;
}
filter_coeff_LUT_initialized[motion_magnitude_adjustment] = 1;
}
return LUT;
}
int vp8_denoiser_filter_c(YV12_BUFFER_CONFIG *mc_running_avg,
YV12_BUFFER_CONFIG *running_avg,
MACROBLOCK *signal,
unsigned int motion_magnitude,
int y_offset,
YV12_BUFFER_CONFIG *running_avg, MACROBLOCK *signal,
unsigned int motion_magnitude, int y_offset,
int uv_offset)
{
unsigned char filtered_buf[16*16];
unsigned char *filtered = filtered_buf;
unsigned char *sig = signal->thismb;
int sig_stride = 16;
unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset;
int mc_avg_y_stride = mc_running_avg->y_stride;
unsigned char *running_avg_y = running_avg->y_buffer + y_offset;
int avg_y_stride = running_avg->y_stride;
const union coeff_pair *LUT = vp8_get_filter_coeff_LUT(motion_magnitude);
int r, c;
int r, c, i;
int sum_diff = 0;
int adj_val[3] = {3, 4, 6};
/* If motion_magnitude is small, making the denoiser more aggressive by
* increasing the adjustment for each level. */
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
{
for (i = 0; i < 3; i++)
adj_val[i] += 1;
}
for (r = 0; r < 16; ++r)
{
/* Calculate absolute differences */
unsigned char abs_diff[16];
union coeff_pair filter_coefficient[16];
for (c = 0; c < 16; ++c)
{
int absdiff = sig[c] - mc_running_avg_y[c];
absdiff = absdiff > 0 ? absdiff : -absdiff;
abs_diff[c] = absdiff;
}
int diff = 0;
int adjustment = 0;
int absdiff = 0;
/* Use LUT to get filter coefficients (two 16b value; f and 256-f) */
for (c = 0; c < 16; ++c)
{
filter_coefficient[c] = LUT[abs_diff[c]];
}
diff = mc_running_avg_y[c] - sig[c];
absdiff = abs(diff);
/* Filtering... */
for (c = 0; c < 16; ++c)
{
const uint16_t state = (uint16_t)(mc_running_avg_y[c]);
const uint16_t sample = (uint16_t)(sig[c]);
running_avg_y[c] = (filter_coefficient[c].as_short[0] * state +
filter_coefficient[c].as_short[1] * sample + 128) >> 8;
}
/* Depending on the magnitude of the difference between the signal and
* filtered version, either replace the signal by the filtered one or
* update the filter state with the signal when the change in a pixel
* isn't classified as noise.
*/
for (c = 0; c < 16; ++c)
{
const int diff = sig[c] - running_avg_y[c];
sum_diff += diff;
if (diff * diff < NOISE_DIFF2_THRESHOLD)
/* When |diff| < 4, use pixel value from last denoised raw. */
if (absdiff <= 3)
{
filtered[c] = running_avg_y[c];
running_avg_y[c] = mc_running_avg_y[c];
sum_diff += diff;
}
else
{
filtered[c] = sig[c];
running_avg_y[c] = sig[c];
if (absdiff >= 4 && absdiff <= 7)
adjustment = adj_val[0];
else if (absdiff >= 8 && absdiff <= 15)
adjustment = adj_val[1];
else
adjustment = adj_val[2];
if (diff > 0)
{
if ((sig[c] + adjustment) > 255)
running_avg_y[c] = 255;
else
running_avg_y[c] = sig[c] + adjustment;
sum_diff += adjustment;
}
else
{
if ((sig[c] - adjustment) < 0)
running_avg_y[c] = 0;
else
running_avg_y[c] = sig[c] - adjustment;
sum_diff -= adjustment;
}
}
}
/* Update pointers for next iteration. */
sig += sig_stride;
filtered += 16;
mc_running_avg_y += mc_avg_y_stride;
running_avg_y += avg_y_stride;
}
if (abs(sum_diff) > SUM_DIFF_THRESHOLD)
{
return COPY_BLOCK;
}
vp8_copy_mem16x16(filtered_buf, 16, signal->thismb, sig_stride);
vp8_copy_mem16x16(running_avg->y_buffer + y_offset, avg_y_stride,
signal->thismb, sig_stride);
return FILTER_BLOCK;
}
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height)
{
int i;

View File

@ -13,8 +13,8 @@
#include "block.h"
#define NOISE_DIFF2_THRESHOLD (75)
#define SUM_DIFF_THRESHOLD (16 * 16 * 2)
#define MOTION_MAGNITUDE_THRESHOLD (8*3)
enum vp8_denoiser_decision
{
@ -39,12 +39,4 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
int recon_yoffset,
int recon_uvoffset);
union coeff_pair
{
uint32_t as_int;
uint16_t as_short[2];
};
union coeff_pair *vp8_get_filter_coeff_LUT(unsigned int motion_magnitude);
#endif /* VP8_ENCODER_DENOISING_H_ */

View File

@ -9,7 +9,6 @@
*/
#include "vp8/encoder/denoising.h"
#include "vp8/common/reconinter.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
@ -19,7 +18,7 @@
union sum_union {
__m128i v;
short e[8];
signed char e[16];
};
int vp8_denoiser_filter_sse2(YV12_BUFFER_CONFIG *mc_running_avg,
@ -27,128 +26,94 @@ int vp8_denoiser_filter_sse2(YV12_BUFFER_CONFIG *mc_running_avg,
MACROBLOCK *signal, unsigned int motion_magnitude,
int y_offset, int uv_offset)
{
unsigned char filtered_buf[16*16];
unsigned char *filtered = filtered_buf;
unsigned char *sig = signal->thismb;
int sig_stride = 16;
unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset;
int mc_avg_y_stride = mc_running_avg->y_stride;
unsigned char *running_avg_y = running_avg->y_buffer + y_offset;
int avg_y_stride = running_avg->y_stride;
const union coeff_pair *LUT = vp8_get_filter_coeff_LUT(motion_magnitude);
int r, c;
__m128i acc_diff = { 0 };
int r;
__m128i acc_diff = _mm_setzero_si128();
const __m128i k_0 = _mm_setzero_si128();
const __m128i k_4 = _mm_set1_epi8(4);
const __m128i k_8 = _mm_set1_epi8(8);
const __m128i k_16 = _mm_set1_epi8(16);
/* Modify each level's adjustment according to motion_magnitude. */
const __m128i l3 = _mm_set1_epi8(
(motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 : 6);
/* Difference between level 3 and level 2 is 2. */
const __m128i l32 = _mm_set1_epi8(2);
/* Difference between level 2 and level 1 is 1. */
const __m128i l21 = _mm_set1_epi8(1);
for (r = 0; r < 16; ++r)
{
__m128i filter_coefficient_00, filter_coefficient_04;
__m128i filter_coefficient_08, filter_coefficient_12;
__m128i v_sig0, v_sig1;
__m128i v_mc_running_avg_y0, v_mc_running_avg_y1;
__m128i state0, state1, state2, state3;
__m128i res0, res1, res2, res3;
/* Calculate differences */
const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
const __m128i v_mc_running_avg_y = _mm_loadu_si128(
(__m128i *)(&mc_running_avg_y[0]));
__m128i v_running_avg_y;
__m128i diff0, diff1, diff0sq, diff1sq, diff_sq;
const __m128i kNOISE_DIFF2_THRESHOLD =
_mm_set1_epi8(NOISE_DIFF2_THRESHOLD);
__m128i take_running, p0, p1, p2;
const __m128i k_zero = _mm_set1_epi16(0);
const __m128i k_128 = _mm_set1_epi32(128);
const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
/* Obtain the sign. FF if diff is negative. */
const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
/* Clamp absolute difference to 16 to be used to get mask. Doing this
* allows us to use _mm_cmpgt_epi8, which operates on signed byte. */
const __m128i clamped_absdiff = _mm_min_epu8(
_mm_or_si128(pdiff, ndiff), k_16);
/* Get masks for l2 l1 and l0 adjustments */
const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff);
const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff);
const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff);
/* Get adjustments for l2, l1, and l0 */
__m128i adj2 = _mm_and_si128(mask2, l32);
const __m128i adj1 = _mm_and_si128(mask1, l21);
const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
__m128i adj, padj, nadj;
/* Calculate absolute differences */
DECLARE_ALIGNED_ARRAY(16,unsigned char,abs_diff,16);
DECLARE_ALIGNED_ARRAY(16,uint32_t,filter_coefficient,16);
__m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
__m128i v_mc_running_avg_y = _mm_loadu_si128(
(__m128i *)(&mc_running_avg_y[0]));
__m128i a_minus_b = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
__m128i b_minus_a = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
__m128i v_abs_diff = _mm_adds_epu8(a_minus_b, b_minus_a);
_mm_store_si128((__m128i *)(&abs_diff[0]), v_abs_diff);
/* Combine the adjustments and get absolute adjustments. */
adj2 = _mm_add_epi8(adj2, adj1);
adj = _mm_sub_epi8(l3, adj2);
adj = _mm_andnot_si128(mask0, adj);
adj = _mm_or_si128(adj, adj0);
/* Use LUT to get filter coefficients (two 16b value; f and 256-f) */
for (c = 0; c < 16; ++c)
{
filter_coefficient[c] = LUT[abs_diff[c]].as_int;
}
/* Restore the sign and get positive and negative adjustments. */
padj = _mm_andnot_si128(diff_sign, adj);
nadj = _mm_and_si128(diff_sign, adj);
/* Filtering... */
/* load filter coefficients (two 16b value; f and 256-f) */
filter_coefficient_00 = _mm_load_si128(
(__m128i *)(&filter_coefficient[ 0]));
filter_coefficient_04 = _mm_load_si128(
(__m128i *)(&filter_coefficient[ 4]));
filter_coefficient_08 = _mm_load_si128(
(__m128i *)(&filter_coefficient[ 8]));
filter_coefficient_12 = _mm_load_si128(
(__m128i *)(&filter_coefficient[12]));
/* Calculate filtered value. */
v_running_avg_y = _mm_adds_epu8(v_sig, padj);
v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
_mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
/* expand sig from 8b to 16b */
v_sig0 = _mm_unpacklo_epi8(v_sig, k_zero);
v_sig1 = _mm_unpackhi_epi8(v_sig, k_zero);
/* expand mc_running_avg_y from 8b to 16b */
v_mc_running_avg_y0 = _mm_unpacklo_epi8(v_mc_running_avg_y, k_zero);
v_mc_running_avg_y1 = _mm_unpackhi_epi8(v_mc_running_avg_y, k_zero);
/* interleave sig and mc_running_avg_y for upcoming multiply-add */
state0 = _mm_unpacklo_epi16(v_mc_running_avg_y0, v_sig0);
state1 = _mm_unpackhi_epi16(v_mc_running_avg_y0, v_sig0);
state2 = _mm_unpacklo_epi16(v_mc_running_avg_y1, v_sig1);
state3 = _mm_unpackhi_epi16(v_mc_running_avg_y1, v_sig1);
/* blend values */
res0 = _mm_madd_epi16(filter_coefficient_00, state0);
res1 = _mm_madd_epi16(filter_coefficient_04, state1);
res2 = _mm_madd_epi16(filter_coefficient_08, state2);
res3 = _mm_madd_epi16(filter_coefficient_12, state3);
res0 = _mm_add_epi32(res0, k_128);
res1 = _mm_add_epi32(res1, k_128);
res2 = _mm_add_epi32(res2, k_128);
res3 = _mm_add_epi32(res3, k_128);
res0 = _mm_srai_epi32(res0, 8);
res1 = _mm_srai_epi32(res1, 8);
res2 = _mm_srai_epi32(res2, 8);
res3 = _mm_srai_epi32(res3, 8);
/* combine the 32b results into a single 8b vector */
res0 = _mm_packs_epi32(res0, res1);
res2 = _mm_packs_epi32(res2, res3);
v_running_avg_y = _mm_packus_epi16(res0, res2);
/* Depending on the magnitude of the difference between the signal and
* filtered version, either replace the signal by the filtered one or
* update the filter state with the signal when the change in a pixel
* isn't classified as noise.
/* Adjustments <=7, and each element in acc_diff can fit in signed
* char.
*/
diff0 = _mm_sub_epi16(v_sig0, res0);
diff1 = _mm_sub_epi16(v_sig1, res2);
acc_diff = _mm_add_epi16(acc_diff, _mm_add_epi16(diff0, diff1));
diff0sq = _mm_mullo_epi16(diff0, diff0);
diff1sq = _mm_mullo_epi16(diff1, diff1);
diff_sq = _mm_packus_epi16(diff0sq, diff1sq);
take_running = _mm_cmplt_epi8(diff_sq, kNOISE_DIFF2_THRESHOLD);
p0 = _mm_and_si128(take_running, v_running_avg_y);
p1 = _mm_andnot_si128(take_running, v_sig);
p2 = _mm_or_si128(p0, p1);
_mm_storeu_si128((__m128i *)(&running_avg_y[0]), p2);
_mm_storeu_si128((__m128i *)(&filtered[0]), p2);
acc_diff = _mm_adds_epi8(acc_diff, padj);
acc_diff = _mm_subs_epi8(acc_diff, nadj);
/* Update pointers for next iteration. */
sig += sig_stride;
filtered += 16;
mc_running_avg_y += mc_avg_y_stride;
running_avg_y += avg_y_stride;
}
{
/* Compute the sum of all pixel differences of this MB. */
union sum_union s;
int sum_diff;
int sum_diff = 0;
s.v = acc_diff;
sum_diff = s.e[0] + s.e[1] + s.e[2] + s.e[3] +
s.e[4] + s.e[5] + s.e[6] + s.e[7];
sum_diff = s.e[0] + s.e[1] + s.e[2] + s.e[3] + s.e[4] + s.e[5]
+ s.e[6] + s.e[7] + s.e[8] + s.e[9] + s.e[10] + s.e[11]
+ s.e[12] + s.e[13] + s.e[14] + s.e[15];
if (abs(sum_diff) > SUM_DIFF_THRESHOLD)
{
return COPY_BLOCK;
}
}
vp8_copy_mem16x16(filtered_buf, 16, signal->thismb, sig_stride);
vp8_copy_mem16x16(running_avg->y_buffer + y_offset, avg_y_stride,
signal->thismb, sig_stride);
return FILTER_BLOCK;
}