Merge remote branch 'origin/master' into experimental
Change-Id: I215466afda88def40f4a5d81f5b58ec383471346
This commit is contained in:
commit
79d8ffd213
30
CHANGELOG
30
CHANGELOG
@ -1,3 +1,33 @@
|
|||||||
|
2011-08-15 v0.9.7-p1 "Cayuga" patch 1
|
||||||
|
This is an incremental bugfix release against Cayuga. All users of that
|
||||||
|
release are strongly encouraged to upgrade.
|
||||||
|
|
||||||
|
- Fix potential OOB reads (cdae03a)
|
||||||
|
|
||||||
|
An unbounded out of bounds read was discovered when the
|
||||||
|
decoder was requested to perform error concealment (new in
|
||||||
|
Cayuga) given a frame with corrupt partition sizes.
|
||||||
|
|
||||||
|
A bounded out of bounds read was discovered affecting all
|
||||||
|
versions of libvpx. Given an multipartition input frame that
|
||||||
|
is truncated between the mode/mv partition and the first
|
||||||
|
residiual paritition (in the block of partition offsets), up
|
||||||
|
to 3 extra bytes could have been read from the source buffer.
|
||||||
|
The code will not take any action regardless of the contents
|
||||||
|
of these undefined bytes, as the truncated buffer is detected
|
||||||
|
immediately following the read based on the calculated
|
||||||
|
starting position of the coefficient partition.
|
||||||
|
|
||||||
|
- Fix potential error concealment crash when the very first frame
|
||||||
|
is missing or corrupt (a609be5)
|
||||||
|
|
||||||
|
- Fix significant artifacts in error concealment (a4c2211, 99d870a)
|
||||||
|
|
||||||
|
- Revert 1-pass CBR rate control changes (e961317)
|
||||||
|
Further testing showed this change produced undesirable visual
|
||||||
|
artifacts, rolling back for now.
|
||||||
|
|
||||||
|
|
||||||
2011-08-02 v0.9.7 "Cayuga"
|
2011-08-02 v0.9.7 "Cayuga"
|
||||||
Our third named release, focused on a faster, higher quality, encoder.
|
Our third named release, focused on a faster, higher quality, encoder.
|
||||||
|
|
||||||
|
8
libs.mk
8
libs.mk
@ -132,6 +132,14 @@ CODEC_SRCS=$(call enabled,CODEC_SRCS)
|
|||||||
INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(CODEC_SRCS)
|
INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(CODEC_SRCS)
|
||||||
INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(call enabled,CODEC_EXPORTS)
|
INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(call enabled,CODEC_EXPORTS)
|
||||||
|
|
||||||
|
|
||||||
|
# Generate a list of all enabled sources, in particular for exporting to gyp
|
||||||
|
# based build systems.
|
||||||
|
libvpx_srcs.txt:
|
||||||
|
@echo " [CREATE] $@"
|
||||||
|
@echo $(CODEC_SRCS) | xargs -n1 echo | sort -u > $@
|
||||||
|
|
||||||
|
|
||||||
ifeq ($(CONFIG_EXTERNAL_BUILD),yes)
|
ifeq ($(CONFIG_EXTERNAL_BUILD),yes)
|
||||||
ifeq ($(CONFIG_MSVS),yes)
|
ifeq ($(CONFIG_MSVS),yes)
|
||||||
|
|
||||||
|
@ -18,7 +18,6 @@
|
|||||||
extern "C"
|
extern "C"
|
||||||
{
|
{
|
||||||
#endif
|
#endif
|
||||||
#include "vpx/vpx_codec.h"
|
|
||||||
#include "type_aliases.h"
|
#include "type_aliases.h"
|
||||||
#include "vpx_scale/yv12config.h"
|
#include "vpx_scale/yv12config.h"
|
||||||
#include "ppflags.h"
|
#include "ppflags.h"
|
||||||
|
@ -567,7 +567,6 @@ static void interpolate_mvs(MACROBLOCKD *mb,
|
|||||||
else
|
else
|
||||||
{
|
{
|
||||||
mv->as_int = 0;
|
mv->as_int = 0;
|
||||||
mi->bmi[row*4 + col].as_mode = NEW4X4;
|
|
||||||
mi->mbmi.need_to_clamp_mvs = 0;
|
mi->mbmi.need_to_clamp_mvs = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -357,11 +357,25 @@ static int frame_max_bits(VP8_COMP *cpi)
|
|||||||
int max_bits;
|
int max_bits;
|
||||||
|
|
||||||
// For CBR we need to also consider buffer fullness.
|
// For CBR we need to also consider buffer fullness.
|
||||||
|
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
|
||||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||||
{
|
{
|
||||||
max_bits = 2 * cpi->av_per_frame_bandwidth;
|
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
|
||||||
max_bits -= cpi->buffered_av_per_frame_bandwidth;
|
|
||||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
|
||||||
|
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
||||||
|
|
||||||
|
// If our buffer is below the optimum level
|
||||||
|
if (buffer_fullness_ratio < 1.0)
|
||||||
|
{
|
||||||
|
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
|
||||||
|
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
|
||||||
|
|
||||||
|
max_bits = (int)(max_bits * buffer_fullness_ratio);
|
||||||
|
|
||||||
|
if (max_bits < min_max_bits)
|
||||||
|
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
|
||||||
|
}
|
||||||
}
|
}
|
||||||
// VBR
|
// VBR
|
||||||
else
|
else
|
||||||
@ -377,45 +391,6 @@ static int frame_max_bits(VP8_COMP *cpi)
|
|||||||
return max_bits;
|
return max_bits;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static int gf_group_max_bits(VP8_COMP *cpi)
|
|
||||||
{
|
|
||||||
// Max allocation for a golden frame group
|
|
||||||
int max_bits;
|
|
||||||
|
|
||||||
// For CBR we need to also consider buffer fullness.
|
|
||||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
||||||
{
|
|
||||||
max_bits = cpi->av_per_frame_bandwidth * cpi->baseline_gf_interval;
|
|
||||||
if (max_bits > cpi->oxcf.optimal_buffer_level)
|
|
||||||
{
|
|
||||||
max_bits -= cpi->oxcf.optimal_buffer_level;
|
|
||||||
max_bits += cpi->buffer_level;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
max_bits -= (cpi->buffered_av_per_frame_bandwidth
|
|
||||||
- cpi->av_per_frame_bandwidth)
|
|
||||||
* cpi->baseline_gf_interval;
|
|
||||||
}
|
|
||||||
|
|
||||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
|
||||||
max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
||||||
max_bits *= cpi->baseline_gf_interval;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// Trap case where we are out of bits
|
|
||||||
if (max_bits < 0)
|
|
||||||
max_bits = 0;
|
|
||||||
|
|
||||||
return max_bits;
|
|
||||||
}
|
|
||||||
|
|
||||||
void vp8_init_first_pass(VP8_COMP *cpi)
|
void vp8_init_first_pass(VP8_COMP *cpi)
|
||||||
{
|
{
|
||||||
zero_stats(cpi->twopass.total_stats);
|
zero_stats(cpi->twopass.total_stats);
|
||||||
@ -1626,7 +1601,7 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|||||||
double abs_mv_in_out_accumulator = 0.0;
|
double abs_mv_in_out_accumulator = 0.0;
|
||||||
double mod_err_per_mb_accumulator = 0.0;
|
double mod_err_per_mb_accumulator = 0.0;
|
||||||
|
|
||||||
int max_group_bits;
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
||||||
|
|
||||||
unsigned int allow_alt_ref =
|
unsigned int allow_alt_ref =
|
||||||
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
||||||
@ -1988,9 +1963,8 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|||||||
|
|
||||||
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
||||||
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
||||||
max_group_bits = gf_group_max_bits(cpi);
|
if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
||||||
if (cpi->twopass.gf_group_bits > max_group_bits)
|
cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
||||||
cpi->twopass.gf_group_bits = max_group_bits;
|
|
||||||
|
|
||||||
// Reset the file position
|
// Reset the file position
|
||||||
reset_fpf_position(cpi, start_pos);
|
reset_fpf_position(cpi, start_pos);
|
||||||
@ -2090,6 +2064,13 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Apply an additional limit for CBR
|
||||||
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||||
|
{
|
||||||
|
if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1))
|
||||||
|
cpi->twopass.gf_bits = cpi->buffer_level >> 1;
|
||||||
|
}
|
||||||
|
|
||||||
// Dont allow a negative value for gf_bits
|
// Dont allow a negative value for gf_bits
|
||||||
if (gf_bits < 0)
|
if (gf_bits < 0)
|
||||||
gf_bits = 0;
|
gf_bits = 0;
|
||||||
|
@ -1529,7 +1529,6 @@ static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|||||||
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||||
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
||||||
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||||
cpi->buffered_av_per_frame_bandwidth = cpi->av_per_frame_bandwidth;
|
|
||||||
|
|
||||||
cpi->total_actual_bits = 0;
|
cpi->total_actual_bits = 0;
|
||||||
cpi->total_target_vs_actual = 0;
|
cpi->total_target_vs_actual = 0;
|
||||||
@ -1625,7 +1624,7 @@ void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cpi->pass == 0 && cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER)
|
if (cpi->pass == 0)
|
||||||
cpi->auto_worst_q = 1;
|
cpi->auto_worst_q = 1;
|
||||||
|
|
||||||
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
||||||
@ -3273,116 +3272,6 @@ void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void update_buffer_level(VP8_COMP *cpi)
|
|
||||||
{
|
|
||||||
int64_t tmp;
|
|
||||||
|
|
||||||
/* Update the buffered average bitrate.
|
|
||||||
*
|
|
||||||
* The buffered average bitrate tracks the bitrate over the buffer
|
|
||||||
* window. Here we simulate taking a frame of average size out
|
|
||||||
* of the buffer, and putting in the new frame just encoded.
|
|
||||||
* It is calculated accordingly:
|
|
||||||
*
|
|
||||||
* A = Average Bits Per Frame In The Buffer
|
|
||||||
* P = New Frame Size
|
|
||||||
* N = Number of bits in the buffer
|
|
||||||
*
|
|
||||||
* We recalculate the average as so:
|
|
||||||
* (N-A)*A + A*P A * (N - A + P)
|
|
||||||
* A' = ------------- = ---------------
|
|
||||||
* N N
|
|
||||||
*
|
|
||||||
* This is modeled after a the standard algorithm for a moving
|
|
||||||
* average with fixed weighting (eg A' = ((N-1)*A + 1*P) / N). This makes
|
|
||||||
* the step response nonlinear but consistent with expected behavior --
|
|
||||||
* when A is large, the model adapts more quickly, since there are
|
|
||||||
* fewer frames in the buffer and conversely when A is small there
|
|
||||||
* will be more frames in the buffer so the average will adapt
|
|
||||||
* slowly.
|
|
||||||
*
|
|
||||||
* TODO(jkoleszar): This may give poor step response in some situations,
|
|
||||||
* for example motion following a long static section. It might be
|
|
||||||
* worth experimenting more with weighting by av_per_frame_bandwidth
|
|
||||||
* rather than buffered_av_per_frame_bandwidth or using a more accurate
|
|
||||||
* algorithm to get faster response. Current testing showed worse results
|
|
||||||
* with that setting though.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* Guard against buffered_av_per_frame_bandwidth falling to 0. Should
|
|
||||||
* never happen, but without this check, it would be irrecoverable.
|
|
||||||
*/
|
|
||||||
if(cpi->buffered_av_per_frame_bandwidth == 0)
|
|
||||||
cpi->buffered_av_per_frame_bandwidth = 1;
|
|
||||||
|
|
||||||
tmp = cpi->oxcf.maximum_buffer_size
|
|
||||||
- cpi->buffered_av_per_frame_bandwidth
|
|
||||||
+ cpi->projected_frame_size;
|
|
||||||
tmp *= cpi->buffered_av_per_frame_bandwidth;
|
|
||||||
cpi->buffered_av_per_frame_bandwidth = tmp
|
|
||||||
/ cpi->oxcf.maximum_buffer_size;
|
|
||||||
|
|
||||||
if(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
||||||
{
|
|
||||||
/* In CBR mode, buffer level is synthesized from the buffered
|
|
||||||
* average per-frame bandwidth to get the response characteristics
|
|
||||||
* of that model, rather than using the unbounded (wrt buffer size)
|
|
||||||
* bits_off_target. ie, the long term average bitrate doesn't
|
|
||||||
* matter in CBR mode. If the clip is consistently undershooting
|
|
||||||
* because it is very static, for example, you don't want to blow
|
|
||||||
* your short term bitrate budget trying to the the long term spend
|
|
||||||
* up to the target when you hit a motion section.
|
|
||||||
*
|
|
||||||
* Instead, the ratio of buffered_av_per_frame_bandwidth to the
|
|
||||||
* target av_per_frame_bandwidth is taken, scaled by
|
|
||||||
* maximum_buffer_size and centered around optimal_buffer_level,
|
|
||||||
* which presents the expected behavior of buffer_level for the other
|
|
||||||
* parts of the rate control code which handle the targeting.
|
|
||||||
*
|
|
||||||
* Note that this only happens after the starting_buffer_level
|
|
||||||
* has passed, to give the model a chance to stabilize.
|
|
||||||
*/
|
|
||||||
if(cpi->total_actual_bits > cpi->oxcf.starting_buffer_level)
|
|
||||||
{
|
|
||||||
tmp = (int64_t)cpi->buffered_av_per_frame_bandwidth
|
|
||||||
* cpi->oxcf.maximum_buffer_size
|
|
||||||
/ cpi->av_per_frame_bandwidth;
|
|
||||||
cpi->buffer_level = cpi->oxcf.maximum_buffer_size
|
|
||||||
- tmp
|
|
||||||
+ cpi->oxcf.optimal_buffer_level;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
cpi->buffer_level = cpi->oxcf.optimal_buffer_level;
|
|
||||||
|
|
||||||
/* Accumulate recent overshoot error.
|
|
||||||
*
|
|
||||||
* If this frame is larger than the target, then accumulate
|
|
||||||
* that error to apply as a damping factor later. Only care about
|
|
||||||
* recent overshoot, so this value decays by (N-P)/N
|
|
||||||
*/
|
|
||||||
if(cpi->total_actual_bits > cpi->oxcf.starting_buffer_level)
|
|
||||||
{
|
|
||||||
int64_t decayed_overshoot;
|
|
||||||
|
|
||||||
decayed_overshoot = cpi->accumulated_overshoot;
|
|
||||||
decayed_overshoot *= (cpi->oxcf.maximum_buffer_size
|
|
||||||
- cpi->projected_frame_size);
|
|
||||||
decayed_overshoot /= cpi->oxcf.maximum_buffer_size;
|
|
||||||
cpi->accumulated_overshoot = decayed_overshoot;
|
|
||||||
|
|
||||||
cpi->accumulated_overshoot +=
|
|
||||||
(cpi->projected_frame_size > cpi->av_per_frame_bandwidth)
|
|
||||||
? cpi->projected_frame_size - cpi->av_per_frame_bandwidth
|
|
||||||
: 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
cpi->buffer_level = cpi->bits_off_target;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
static void encode_frame_to_data_rate
|
static void encode_frame_to_data_rate
|
||||||
(
|
(
|
||||||
VP8_COMP *cpi,
|
VP8_COMP *cpi,
|
||||||
@ -3628,8 +3517,7 @@ static void encode_frame_to_data_rate
|
|||||||
// For CBR if the buffer reaches its maximum level then we can no longer
|
// For CBR if the buffer reaches its maximum level then we can no longer
|
||||||
// save up bits for later frames so we might as well use them up
|
// save up bits for later frames so we might as well use them up
|
||||||
// on the current frame.
|
// on the current frame.
|
||||||
if (cpi->pass == 2
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
||||||
&& (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
||||||
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
||||||
{
|
{
|
||||||
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
||||||
@ -3720,10 +3608,6 @@ static void encode_frame_to_data_rate
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if(cpi->pass != 2)
|
|
||||||
Q = cpi->auto_worst_q?
|
|
||||||
cpi->active_worst_quality:cpi->avg_frame_qindex;
|
|
||||||
|
|
||||||
cpi->active_best_quality = inter_minq[Q];
|
cpi->active_best_quality = inter_minq[Q];
|
||||||
|
|
||||||
// For the constant/constrained quality mode we dont want
|
// For the constant/constrained quality mode we dont want
|
||||||
@ -4036,17 +3920,15 @@ static void encode_frame_to_data_rate
|
|||||||
(cpi->active_worst_quality < cpi->worst_quality) &&
|
(cpi->active_worst_quality < cpi->worst_quality) &&
|
||||||
(cpi->projected_frame_size > frame_over_shoot_limit))
|
(cpi->projected_frame_size > frame_over_shoot_limit))
|
||||||
{
|
{
|
||||||
/* step down active_worst_quality such that the corresponding
|
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
|
||||||
* active_best_quality will be equal to the current
|
|
||||||
* active_worst_quality + 1. Once the limit on active_best_quality
|
|
||||||
* is reached, active_worst_quality will equal worst_quality.
|
|
||||||
*/
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for(i=cpi->active_worst_quality; i<cpi->worst_quality; i++)
|
// If so is there any scope for relaxing it
|
||||||
if(inter_minq[i] >= cpi->active_worst_quality + 1)
|
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
|
||||||
break;
|
{
|
||||||
cpi->active_worst_quality = i;
|
cpi->active_worst_quality++;
|
||||||
|
top_index = cpi->active_worst_quality;
|
||||||
|
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
|
||||||
|
}
|
||||||
|
|
||||||
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
||||||
active_worst_qchanged = TRUE;
|
active_worst_qchanged = TRUE;
|
||||||
@ -4434,9 +4316,10 @@ static void encode_frame_to_data_rate
|
|||||||
|
|
||||||
// Update the buffer level variable.
|
// Update the buffer level variable.
|
||||||
// Non-viewable frames are a special case and are treated as pure overhead.
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
||||||
if ( cm->show_frame )
|
if ( !cm->show_frame )
|
||||||
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
||||||
cpi->bits_off_target -= cpi->projected_frame_size;
|
else
|
||||||
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
||||||
|
|
||||||
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
||||||
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
||||||
@ -4450,7 +4333,7 @@ static void encode_frame_to_data_rate
|
|||||||
// Debug stats
|
// Debug stats
|
||||||
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
||||||
|
|
||||||
update_buffer_level(cpi);
|
cpi->buffer_level = cpi->bits_off_target;
|
||||||
|
|
||||||
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
||||||
if (cm->frame_type == KEY_FRAME)
|
if (cm->frame_type == KEY_FRAME)
|
||||||
|
@ -348,10 +348,6 @@ typedef struct VP8_COMP
|
|||||||
int per_frame_bandwidth; // Current section per frame bandwidth target
|
int per_frame_bandwidth; // Current section per frame bandwidth target
|
||||||
int av_per_frame_bandwidth; // Average frame size target for clip
|
int av_per_frame_bandwidth; // Average frame size target for clip
|
||||||
int min_frame_bandwidth; // Minimum allocation that should be used for any frame
|
int min_frame_bandwidth; // Minimum allocation that should be used for any frame
|
||||||
int buffered_av_per_frame_bandwidth; // Average bitrate over the last buffer
|
|
||||||
int buffered_av_per_frame_bandwidth_rem; // Average bitrate remainder
|
|
||||||
int accumulated_overshoot; // Accumulated # of bits spent > target
|
|
||||||
|
|
||||||
int inter_frame_target;
|
int inter_frame_target;
|
||||||
double output_frame_rate;
|
double output_frame_rate;
|
||||||
int64_t last_time_stamp_seen;
|
int64_t last_time_stamp_seen;
|
||||||
|
@ -653,7 +653,7 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
|||||||
int min_frame_target;
|
int min_frame_target;
|
||||||
int Adjustment;
|
int Adjustment;
|
||||||
|
|
||||||
min_frame_target = 1;
|
min_frame_target = 0;
|
||||||
|
|
||||||
if (cpi->pass == 2)
|
if (cpi->pass == 2)
|
||||||
{
|
{
|
||||||
@ -662,11 +662,9 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
|||||||
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
||||||
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
||||||
}
|
}
|
||||||
else
|
else if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
||||||
{
|
min_frame_target = cpi->per_frame_bandwidth / 4;
|
||||||
if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
|
||||||
min_frame_target = cpi->per_frame_bandwidth / 4;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Special alt reference frame case
|
// Special alt reference frame case
|
||||||
if (cpi->common.refresh_alt_ref_frame)
|
if (cpi->common.refresh_alt_ref_frame)
|
||||||
@ -1159,33 +1157,6 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
|||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cpi->pass==0
|
|
||||||
&& cpi->common.refresh_golden_frame
|
|
||||||
&& cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
|
|
||||||
int64_t adjust;
|
|
||||||
|
|
||||||
/*
|
|
||||||
frames_in_buffer = cpi->oxcf.maximum_buffer_size
|
|
||||||
/ cpi->av_per_frame_bandwidth;
|
|
||||||
gf_in_buffer = frames_in_buffer /
|
|
||||||
cpi->frames_till_gf_update_due;
|
|
||||||
overshoot_per_gf = cpi->accumulated_overshoot / gf_in_buffer;
|
|
||||||
|
|
||||||
*/
|
|
||||||
|
|
||||||
adjust = cpi->accumulated_overshoot;
|
|
||||||
adjust *= cpi->frames_till_gf_update_due + 1;
|
|
||||||
adjust *= cpi->av_per_frame_bandwidth;
|
|
||||||
adjust /= cpi->oxcf.maximum_buffer_size;
|
|
||||||
|
|
||||||
if (adjust > (cpi->this_frame_target - min_frame_target))
|
|
||||||
adjust = (cpi->this_frame_target - min_frame_target);
|
|
||||||
else if (adjust < 0)
|
|
||||||
adjust = 0;
|
|
||||||
|
|
||||||
cpi->this_frame_target -= adjust;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user