VP9: move loopfilter build masks to decode loop

The loopfilter masks are now built in the decode loop.
This is done so we can eventually reduce the number of
MODE_INFO structs required by the decoder.

The encoder builds the masks for the entire frame prior
to calling the loopfilter.

Change-Id: Ia2146b07e0acb8c50203e586dfae0c4c5b316f11
This commit is contained in:
Scott LaVarnway
2015-09-29 05:20:49 -07:00
parent af631e1f19
commit 7718117104
7 changed files with 334 additions and 165 deletions

View File

@@ -115,6 +115,8 @@ void vp9_free_context_buffers(VP9_COMMON *cm) {
cm->above_context = NULL; cm->above_context = NULL;
vpx_free(cm->above_seg_context); vpx_free(cm->above_seg_context);
cm->above_seg_context = NULL; cm->above_seg_context = NULL;
vpx_free(cm->lf.lfm);
cm->lf.lfm = NULL;
} }
int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) { int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) {
@@ -149,6 +151,16 @@ int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) {
cm->above_context_alloc_cols = cm->mi_cols; cm->above_context_alloc_cols = cm->mi_cols;
} }
vpx_free(cm->lf.lfm);
// Each lfm holds bit masks for all the 8x8 blocks in a 64x64 region. The
// stride and rows are rounded up / truncated to a multiple of 8.
cm->lf.lfm_stride = (cm->mi_cols + (MI_BLOCK_SIZE - 1)) >> 3;
cm->lf.lfm = (LOOP_FILTER_MASK *)vpx_calloc(
((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride,
sizeof(*cm->lf.lfm));
if (!cm->lf.lfm) goto fail;
return 0; return 0;
fail: fail:

View File

@@ -825,6 +825,120 @@ static void build_y_mask(const loop_filter_info_n *const lfi_n,
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
} }
void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row,
const int mi_col, LOOP_FILTER_MASK *lfm) {
int i;
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
}
if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
}
// This function sets up the bit masks for the entire 64x64 region represented // This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col. // by mi_row, mi_col.
// TODO(JBB): This function only works for yv12. // TODO(JBB): This function only works for yv12.
@@ -855,7 +969,6 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
const int shift_8_y[] = {0, 1, 8, 9}; const int shift_8_y[] = {0, 1, 8, 9};
const int shift_32_uv[] = {0, 2, 8, 10}; const int shift_32_uv[] = {0, 2, 8, 10};
const int shift_16_uv[] = {0, 1, 4, 5}; const int shift_16_uv[] = {0, 1, 4, 5};
int i;
const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
cm->mi_rows - mi_row : MI_BLOCK_SIZE); cm->mi_rows - mi_row : MI_BLOCK_SIZE);
const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
@@ -970,114 +1083,8 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
} }
break; break;
} }
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size vp9_adjust_mask(cm, mi_row, mi_col, lfm);
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
}
if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
} }
static void filter_selectively_vert(uint8_t *s, int pitch, static void filter_selectively_vert(uint8_t *s, int pitch,
@@ -1428,6 +1435,7 @@ void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
struct buf_2d *const dst = &plane->dst; struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf; uint8_t *const dst0 = dst->buf;
int r, c; int r, c;
uint8_t lfl_uv[16];
uint16_t mask_16x16 = lfm->left_uv[TX_16X16]; uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
uint16_t mask_8x8 = lfm->left_uv[TX_8X8]; uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
@@ -1440,8 +1448,8 @@ void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) { for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
if (plane->plane_type == 1) { if (plane->plane_type == 1) {
for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) { for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
lfm->lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)]; lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
lfm->lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)]; lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)];
} }
} }
@@ -1457,18 +1465,18 @@ void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
highbd_filter_selectively_vert_row2( highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_uv[r << 1], (int)cm->bit_depth); &lfl_uv[r << 1], (int)cm->bit_depth);
} else { } else {
filter_selectively_vert_row2( filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, plane->subsampling_x, dst->buf, dst->stride,
mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_uv[r << 1]); &lfl_uv[r << 1]);
} }
#else #else
filter_selectively_vert_row2( filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, plane->subsampling_x, dst->buf, dst->stride,
mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_uv[r << 1]); &lfl_uv[r << 1]);
#endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 16 * dst->stride; dst->buf += 16 * dst->stride;
@@ -1509,16 +1517,16 @@ void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf),
dst->stride, mask_16x16_r, mask_8x8_r, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, &cm->lf_info, mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
&lfm->lfl_uv[r << 1], (int)cm->bit_depth); &lfl_uv[r << 1], (int)cm->bit_depth);
} else { } else {
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, &cm->lf_info, mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
&lfm->lfl_uv[r << 1]); &lfl_uv[r << 1]);
} }
#else #else
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, &cm->lf_info, mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
&lfm->lfl_uv[r << 1]); &lfl_uv[r << 1]);
#endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride; dst->buf += 8 * dst->stride;
@@ -1529,13 +1537,11 @@ void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
} }
} }
void vp9_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm,
VP9_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE], struct macroblockd_plane planes[MAX_MB_PLANE],
int start, int stop, int y_only) { int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE; const int num_planes = y_only ? 1 : MAX_MB_PLANE;
enum lf_path path; enum lf_path path;
LOOP_FILTER_MASK lfm;
int mi_row, mi_col; int mi_row, mi_col;
if (y_only) if (y_only)
@@ -1549,24 +1555,24 @@ void vp9_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer,
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
int plane; int plane;
vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
// TODO(JBB): Make setup_mask work for non 420. // TODO(JBB): Make setup_mask work for non 420.
vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, vp9_adjust_mask(cm, mi_row, mi_col, lfm);
&lfm);
vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, &lfm); vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
for (plane = 1; plane < num_planes; ++plane) { for (plane = 1; plane < num_planes; ++plane) {
switch (path) { switch (path) {
case LF_PATH_420: case LF_PATH_420:
vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, &lfm); vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
break; break;
case LF_PATH_444: case LF_PATH_444:
vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, &lfm); vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
break; break;
case LF_PATH_SLOW: case LF_PATH_SLOW:
vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
@@ -1592,10 +1598,132 @@ void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
} }
end_mi_row = start_mi_row + mi_rows_to_filter; end_mi_row = start_mi_row + mi_rows_to_filter;
loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
}
// Used by the encoder to build the loopfilter masks.
void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
int mi_col, mi_row;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
vp9_loop_filter_frame_init(cm, frame_filter_level); vp9_loop_filter_frame_init(cm, frame_filter_level);
vp9_loop_filter_rows(frame, cm, xd->plane,
start_mi_row, end_mi_row, for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) {
y_only); MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
// vp9_setup_mask() zeros lfm
vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
get_lfm(&cm->lf, mi_row, mi_col));
}
}
}
// 8x8 blocks in a superblock. A "1" represents the first block in a 16x16
// or greater area.
static const uint8_t first_block_in_16x16[8][8] = {
{1, 0, 1, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 1, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 1, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 1, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0}
};
// This function sets up the bit masks for a block represented
// by mi_row, mi_col in a 64x64 region.
// TODO(SJL): This function only works for yv12.
void vp9_build_mask(VP9_COMMON *cm, const MB_MODE_INFO *mbmi, int mi_row,
int mi_col, int bw, int bh) {
const BLOCK_SIZE block_size = mbmi->sb_type;
const TX_SIZE tx_size_y = mbmi->tx_size;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
const int filter_level = get_filter_level(lfi_n, mbmi);
const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1);
LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
const int row_in_sb = (mi_row & 7);
const int col_in_sb = (mi_col & 7);
const int shift_y = col_in_sb + (row_in_sb << 3);
const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2);
const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb];
if (!filter_level) {
return;
} else {
int index = shift_y;
int i;
for (i = 0; i < bh; i++) {
memset(&lfm->lfl_y[index], filter_level, bw);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (build_uv) {
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
}
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mbmi->skip && is_inter_block(mbmi))
return;
// Add a mask for the transform size. The transform size mask is set to
// be correct for a 64x64 prediction block size. Mask to match the size of
// the block we are working on and then shift it into place.
*above_y |= (size_mask[block_size] &
above_64x64_txform_mask[tx_size_y]) << shift_y;
*left_y |= (size_mask[block_size] &
left_64x64_txform_mask[tx_size_y]) << shift_y;
if (build_uv) {
*above_uv |= (size_mask_uv[block_size] &
above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
*left_uv |= (size_mask_uv[block_size] &
left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
}
// Try to determine what to do with the internal 4x4 block boundaries. These
// differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
// internal ones can be skipped and don't depend on the prediction block size.
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & -1ULL) << shift_y;
if (build_uv && tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
} }
void vp9_loop_filter_data_reset( void vp9_loop_filter_data_reset(
@@ -1609,9 +1737,17 @@ void vp9_loop_filter_data_reset(
memcpy(lf_data->planes, planes, sizeof(lf_data->planes)); memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
} }
void vp9_reset_lfm(VP9_COMMON *cm) {
if (cm->lf.filter_level) {
memset(cm->lf.lfm, 0,
((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride *
sizeof(*cm->lf.lfm));
}
}
int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) { int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
(void)unused; (void)unused;
vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only); lf_data->start, lf_data->stop, lf_data->y_only);
return 1; return 1;
} }

View File

@@ -35,24 +35,6 @@ enum lf_path {
LF_PATH_SLOW, LF_PATH_SLOW,
}; };
struct loopfilter {
int filter_level;
int sharpness_level;
int last_sharpness_level;
uint8_t mode_ref_delta_enabled;
uint8_t mode_ref_delta_update;
// 0 = Intra, Last, GF, ARF
signed char ref_deltas[MAX_REF_LF_DELTAS];
signed char last_ref_deltas[MAX_REF_LF_DELTAS];
// 0 = ZERO_MV, MV
signed char mode_deltas[MAX_MODE_LF_DELTAS];
signed char last_mode_deltas[MAX_MODE_LF_DELTAS];
};
// Need to align this structure so when it is declared and // Need to align this structure so when it is declared and
// passed it can be loaded into vector registers. // passed it can be loaded into vector registers.
typedef struct { typedef struct {
@@ -83,9 +65,29 @@ typedef struct {
uint16_t above_uv[TX_SIZES]; uint16_t above_uv[TX_SIZES];
uint16_t int_4x4_uv; uint16_t int_4x4_uv;
uint8_t lfl_y[64]; uint8_t lfl_y[64];
uint8_t lfl_uv[16];
} LOOP_FILTER_MASK; } LOOP_FILTER_MASK;
struct loopfilter {
int filter_level;
int sharpness_level;
int last_sharpness_level;
uint8_t mode_ref_delta_enabled;
uint8_t mode_ref_delta_update;
// 0 = Intra, Last, GF, ARF
signed char ref_deltas[MAX_REF_LF_DELTAS];
signed char last_ref_deltas[MAX_REF_LF_DELTAS];
// 0 = ZERO_MV, MV
signed char mode_deltas[MAX_MODE_LF_DELTAS];
signed char last_mode_deltas[MAX_MODE_LF_DELTAS];
LOOP_FILTER_MASK *lfm;
int lfm_stride;
};
/* assorted loopfilter functions which get used elsewhere */ /* assorted loopfilter functions which get used elsewhere */
struct VP9Common; struct VP9Common;
struct macroblockd; struct macroblockd;
@@ -116,7 +118,7 @@ void vp9_filter_block_plane_non420(struct VP9Common *cm,
void vp9_loop_filter_init(struct VP9Common *cm); void vp9_loop_filter_init(struct VP9Common *cm);
// Update the loop filter for the current frame. // Update the loop filter for the current frame.
// This should be called before vp9_loop_filter_rows(), vp9_loop_filter_frame() // This should be called before vp9_loop_filter_frame(), vp9_build_mask_frame()
// calls this function directly. // calls this function directly.
void vp9_loop_filter_frame_init(struct VP9Common *cm, int default_filt_lvl); void vp9_loop_filter_frame_init(struct VP9Common *cm, int default_filt_lvl);
@@ -126,11 +128,19 @@ void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
int filter_level, int filter_level,
int y_only, int partial_frame); int y_only, int partial_frame);
// Apply the loop filter to [start, stop) macro block rows in frame_buffer. // Get the superblock lfm for a given mi_row, mi_col.
void vp9_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, static INLINE LOOP_FILTER_MASK *get_lfm(const struct loopfilter *lf,
struct VP9Common *cm, const int mi_row, const int mi_col) {
struct macroblockd_plane planes[MAX_MB_PLANE], return &lf->lfm[(mi_col >> 3) + ((mi_row >> 3) * lf->lfm_stride)];
int start, int stop, int y_only); }
void vp9_build_mask(struct VP9Common *cm, const MB_MODE_INFO *mbmi, int mi_row,
int mi_col, int bw, int bh);
void vp9_adjust_mask(struct VP9Common *const cm, const int mi_row,
const int mi_col, LOOP_FILTER_MASK *lfm);
void vp9_build_mask_frame(struct VP9Common *cm, int frame_filter_level,
int partial_frame);
void vp9_reset_lfm(struct VP9Common *const cm);
typedef struct LoopFilterWorkerData { typedef struct LoopFilterWorkerData {
YV12_BUFFER_CONFIG *frame_buffer; YV12_BUFFER_CONFIG *frame_buffer;

View File

@@ -109,29 +109,27 @@ void thread_loop_filter_rows(const YV12_BUFFER_CONFIG *const frame_buffer,
for (mi_row = start; mi_row < stop; for (mi_row = start; mi_row < stop;
mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) { mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) {
MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
const int r = mi_row >> MI_BLOCK_SIZE_LOG2; const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
const int c = mi_col >> MI_BLOCK_SIZE_LOG2; const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
LOOP_FILTER_MASK lfm;
int plane; int plane;
sync_read(lf_sync, r, c); sync_read(lf_sync, r, c);
vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
// TODO(JBB): Make setup_mask work for non 420. vp9_adjust_mask(cm, mi_row, mi_col, lfm);
vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
&lfm);
vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, &lfm); vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
for (plane = 1; plane < num_planes; ++plane) { for (plane = 1; plane < num_planes; ++plane) {
switch (path) { switch (path) {
case LF_PATH_420: case LF_PATH_420:
vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, &lfm); vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
break; break;
case LF_PATH_444: case LF_PATH_444:
vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, &lfm); vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
break; break;
case LF_PATH_SLOW: case LF_PATH_SLOW:
vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,

View File

@@ -896,6 +896,10 @@ static void decode_block(VP9Decoder *const pbi, MACROBLOCKD *const xd,
} }
xd->corrupted |= vpx_reader_has_error(r); xd->corrupted |= vpx_reader_has_error(r);
if (cm->lf.filter_level) {
vp9_build_mask(cm, mbmi, mi_row, mi_col, bw, bh);
}
} }
static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd,
@@ -1464,6 +1468,8 @@ static const uint8_t *decode_tiles(VP9Decoder *pbi,
memset(cm->above_seg_context, 0, memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_cols); sizeof(*cm->above_seg_context) * aligned_cols);
vp9_reset_lfm(cm);
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
if (pbi->tile_data == NULL || if (pbi->tile_data == NULL ||
@@ -1662,6 +1668,8 @@ static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
memset(cm->above_seg_context, 0, memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_mi_cols); sizeof(*cm->above_seg_context) * aligned_mi_cols);
vp9_reset_lfm(cm);
// Load tile data into tile_buffers // Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);

View File

@@ -2755,6 +2755,7 @@ void vp9_update_reference_frames(VP9_COMP *cpi) {
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->td.mb.e_mbd; MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
struct loopfilter *lf = &cm->lf; struct loopfilter *lf = &cm->lf;
if (xd->lossless) { if (xd->lossless) {
lf->filter_level = 0; lf->filter_level = 0;
} else { } else {
@@ -2771,6 +2772,8 @@ static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
} }
if (lf->filter_level > 0) { if (lf->filter_level > 0) {
vp9_build_mask_frame(cm, lf->filter_level, 0);
if (cpi->num_workers > 1) if (cpi->num_workers > 1)
vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane, vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
lf->filter_level, 0, 0, lf->filter_level, 0, 0,

View File

@@ -40,6 +40,8 @@ static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
VP9_COMMON *const cm = &cpi->common; VP9_COMMON *const cm = &cpi->common;
int64_t filt_err; int64_t filt_err;
vp9_build_mask_frame(cm, filt_level, partial_frame);
if (cpi->num_workers > 1) if (cpi->num_workers > 1)
vp9_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane, vp9_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane,
filt_level, 1, partial_frame, filt_level, 1, partial_frame,