block error avx2: sum in 32 bits when possible

Add 31bit pairs before unpacking in x86 block error code

AVX2 code provides a very minor performance improvement.

BUG=webm:1210

Change-Id: I4c82308eaf65741dca2f5c6db9be9c85f905073a
This commit is contained in:
Kyle Siefring 2017-05-01 09:19:11 -07:00 committed by Johann
parent 2ff01aa1e4
commit 760c214519

View File

@ -8,7 +8,8 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h> // AVX2
#include <assert.h>
#include <immintrin.h>
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
@ -17,55 +18,88 @@
int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
__m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
__m256i sse_reg, ssz_reg;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_reg_64hi, ssz_reg_64hi;
__m128i sse_reg128, ssz_reg128;
int64_t sse;
int i;
const __m256i zero_reg = _mm256_set1_epi16(0);
const __m256i zero_reg = _mm256_setzero_si256();
// init sse and ssz registerd to zero
sse_reg = _mm256_set1_epi16(0);
ssz_reg = _mm256_set1_epi16(0);
for (i = 0; i < block_size; i += 16) {
// load 32 bytes from coeff and dqcoeff
coeff_reg = load_tran_low(coeff + i);
dqcoeff_reg = load_tran_low(dqcoeff + i);
// If the block size is 16 then the results will fit in 32 bits.
if (block_size == 16) {
__m256i coeff_reg, dqcoeff_reg, coeff_reg_hi, dqcoeff_reg_hi;
// Load 16 elements for coeff and dqcoeff.
coeff_reg = load_tran_low(coeff);
dqcoeff_reg = load_tran_low(dqcoeff);
// dqcoeff - coeff
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
// madd (dqcoeff - coeff)
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
// madd coeff
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
// expand each double word of madd (dqcoeff - coeff) to quad word
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
// expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
// add each quad word of madd (dqcoeff - coeff) and madd (coeff)
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
// Save the higher 64 bit of each 128 bit lane.
dqcoeff_reg_hi = _mm256_srli_si256(dqcoeff_reg, 8);
coeff_reg_hi = _mm256_srli_si256(coeff_reg, 8);
// Add the higher 64 bit to the low 64 bit.
dqcoeff_reg = _mm256_add_epi32(dqcoeff_reg, dqcoeff_reg_hi);
coeff_reg = _mm256_add_epi32(coeff_reg, coeff_reg_hi);
// Expand each double word in the lower 64 bits to quad word.
sse_reg = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
ssz_reg = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
} else {
int i;
assert(block_size % 32 == 0);
sse_reg = zero_reg;
ssz_reg = zero_reg;
for (i = 0; i < block_size; i += 32) {
__m256i coeff_reg_0, coeff_reg_1, dqcoeff_reg_0, dqcoeff_reg_1;
// Load 32 elements for coeff and dqcoeff.
coeff_reg_0 = load_tran_low(coeff + i);
dqcoeff_reg_0 = load_tran_low(dqcoeff + i);
coeff_reg_1 = load_tran_low(coeff + i + 16);
dqcoeff_reg_1 = load_tran_low(dqcoeff + i + 16);
// dqcoeff - coeff
dqcoeff_reg_0 = _mm256_sub_epi16(dqcoeff_reg_0, coeff_reg_0);
dqcoeff_reg_1 = _mm256_sub_epi16(dqcoeff_reg_1, coeff_reg_1);
// madd (dqcoeff - coeff)
dqcoeff_reg_0 = _mm256_madd_epi16(dqcoeff_reg_0, dqcoeff_reg_0);
dqcoeff_reg_1 = _mm256_madd_epi16(dqcoeff_reg_1, dqcoeff_reg_1);
// madd coeff
coeff_reg_0 = _mm256_madd_epi16(coeff_reg_0, coeff_reg_0);
coeff_reg_1 = _mm256_madd_epi16(coeff_reg_1, coeff_reg_1);
// Add the first madd (dqcoeff - coeff) with the second.
dqcoeff_reg_0 = _mm256_add_epi32(dqcoeff_reg_0, dqcoeff_reg_1);
// Add the first madd (coeff) with the second.
coeff_reg_0 = _mm256_add_epi32(coeff_reg_0, coeff_reg_1);
// Expand each double word of madd (dqcoeff - coeff) to quad word.
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg_0, zero_reg);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg_0, zero_reg);
// expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg_0, zero_reg);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg_0, zero_reg);
// Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
}
}
// save the higher 64 bit of each 128 bit lane
// Save the higher 64 bit of each 128 bit lane.
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
// add the higher 64 bit to the low 64 bit
// Add the higher 64 bit to the low 64 bit.
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
// add each 64 bit from each of the 128 bit lane of the 256 bit
// Add each 64 bit from each of the 128 bit lane of the 256 bit.
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
_mm256_extractf128_si256(sse_reg, 1));
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
_mm256_extractf128_si256(ssz_reg, 1));
// store the results
// Store the results.
_mm_storel_epi64((__m128i *)(&sse), sse_reg128);
_mm_storel_epi64((__m128i *)(ssz), ssz_reg128);