Merge remote branch 'internal/upstream' into HEAD
This commit is contained in:
commit
7467f6d04a
2
libs.mk
2
libs.mk
@ -198,7 +198,7 @@ libvpx.ver: $(call enabled,CODEC_EXPORTS)
|
||||
$(qexec)echo "local: *; };" >> $@
|
||||
CLEAN-OBJS += libvpx.ver
|
||||
|
||||
$(addprefix $(DIST_DIR)/,$(LIBVPX_SO_SYMLINKS)):
|
||||
$(addprefix $(DIST_DIR)/,$(LIBVPX_SO_SYMLINKS)): $(DIST_DIR)/$(LIBSUBDIR)/$(LIBVPX_SO)
|
||||
@echo " [LN] $@"
|
||||
$(qexec)ln -sf $(LIBVPX_SO) $@
|
||||
|
||||
|
@ -214,11 +214,25 @@ static int frame_max_bits(VP8_COMP *cpi)
|
||||
int max_bits;
|
||||
|
||||
// For CBR we need to also consider buffer fullness.
|
||||
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
max_bits = 2 * cpi->av_per_frame_bandwidth;
|
||||
max_bits -= cpi->buffered_av_per_frame_bandwidth;
|
||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
||||
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
|
||||
|
||||
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
|
||||
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
||||
|
||||
// If our buffer is below the optimum level
|
||||
if (buffer_fullness_ratio < 1.0)
|
||||
{
|
||||
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
|
||||
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
|
||||
|
||||
max_bits = (int)(max_bits * buffer_fullness_ratio);
|
||||
|
||||
if (max_bits < min_max_bits)
|
||||
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
|
||||
}
|
||||
}
|
||||
// VBR
|
||||
else
|
||||
@ -235,45 +249,6 @@ static int frame_max_bits(VP8_COMP *cpi)
|
||||
}
|
||||
|
||||
|
||||
static int gf_group_max_bits(VP8_COMP *cpi)
|
||||
{
|
||||
// Max allocation for a golden frame group
|
||||
int max_bits;
|
||||
|
||||
// For CBR we need to also consider buffer fullness.
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
max_bits = cpi->av_per_frame_bandwidth * cpi->baseline_gf_interval;
|
||||
if (max_bits > cpi->oxcf.optimal_buffer_level)
|
||||
{
|
||||
max_bits -= cpi->oxcf.optimal_buffer_level;
|
||||
max_bits += cpi->buffer_level;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_bits -= (cpi->buffered_av_per_frame_bandwidth
|
||||
- cpi->av_per_frame_bandwidth)
|
||||
* cpi->baseline_gf_interval;
|
||||
}
|
||||
|
||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
||||
max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
||||
max_bits *= cpi->baseline_gf_interval;
|
||||
}
|
||||
|
||||
|
||||
// Trap case where we are out of bits
|
||||
if (max_bits < 0)
|
||||
max_bits = 0;
|
||||
|
||||
return max_bits;
|
||||
}
|
||||
|
||||
|
||||
static void output_stats(const VP8_COMP *cpi,
|
||||
struct vpx_codec_pkt_list *pktlist,
|
||||
FIRSTPASS_STATS *stats)
|
||||
@ -1358,7 +1333,7 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
double abs_mv_in_out_accumulator = 0.0;
|
||||
double mod_err_per_mb_accumulator = 0.0;
|
||||
|
||||
int max_group_bits;
|
||||
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
||||
|
||||
unsigned int allow_alt_ref =
|
||||
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
||||
@ -1711,9 +1686,8 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
|
||||
|
||||
// Clip cpi->twopass.gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
||||
max_group_bits = gf_group_max_bits(cpi);
|
||||
if (cpi->twopass.gf_group_bits > max_group_bits)
|
||||
cpi->twopass.gf_group_bits = max_group_bits;
|
||||
if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
||||
cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
||||
|
||||
// Reset the file position
|
||||
reset_fpf_position(cpi, start_pos);
|
||||
@ -1808,6 +1782,13 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an additional limit for CBR
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1))
|
||||
cpi->twopass.gf_bits = cpi->buffer_level >> 1;
|
||||
}
|
||||
|
||||
// Dont allow a negative value for gf_bits
|
||||
if (gf_bits < 0)
|
||||
gf_bits = 0;
|
||||
|
@ -1543,7 +1543,6 @@ static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
||||
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->buffered_av_per_frame_bandwidth = cpi->av_per_frame_bandwidth;
|
||||
|
||||
cpi->total_actual_bits = 0;
|
||||
cpi->total_target_vs_actual = 0;
|
||||
@ -1639,7 +1638,7 @@ void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
||||
break;
|
||||
}
|
||||
|
||||
if (cpi->pass == 0 && cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER)
|
||||
if (cpi->pass == 0)
|
||||
cpi->auto_worst_q = 1;
|
||||
|
||||
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
||||
@ -3529,8 +3528,7 @@ static void encode_frame_to_data_rate
|
||||
// For CBR if the buffer reaches its maximum level then we can no longer
|
||||
// save up bits for later frames so we might as well use them up
|
||||
// on the current frame.
|
||||
if (cpi->pass == 2
|
||||
&& (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
||||
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
||||
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
||||
{
|
||||
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
||||
@ -3621,9 +3619,6 @@ static void encode_frame_to_data_rate
|
||||
}
|
||||
else
|
||||
{
|
||||
if(cpi->pass != 2)
|
||||
Q = cpi->avg_frame_qindex;
|
||||
|
||||
cpi->active_best_quality = inter_minq[Q];
|
||||
|
||||
// For the constant/constrained quality mode we dont want
|
||||
@ -3936,16 +3931,15 @@ static void encode_frame_to_data_rate
|
||||
(cpi->active_worst_quality < cpi->worst_quality) &&
|
||||
(cpi->projected_frame_size > frame_over_shoot_limit))
|
||||
{
|
||||
/* step down active_worst_quality such that the corresponding
|
||||
* active_best_quality will be equal to the current
|
||||
* active_worst_quality + 1
|
||||
*/
|
||||
int i;
|
||||
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
|
||||
|
||||
for(i=cpi->active_worst_quality; i<cpi->worst_quality; i++)
|
||||
if(inter_minq[i] >= cpi->active_worst_quality + 1)
|
||||
break;
|
||||
cpi->active_worst_quality = i;
|
||||
// If so is there any scope for relaxing it
|
||||
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
|
||||
{
|
||||
cpi->active_worst_quality++;
|
||||
top_index = cpi->active_worst_quality;
|
||||
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
|
||||
}
|
||||
|
||||
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
||||
active_worst_qchanged = TRUE;
|
||||
@ -4333,9 +4327,10 @@ static void encode_frame_to_data_rate
|
||||
|
||||
// Update the buffer level variable.
|
||||
// Non-viewable frames are a special case and are treated as pure overhead.
|
||||
if ( cm->show_frame )
|
||||
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
||||
cpi->bits_off_target -= cpi->projected_frame_size;
|
||||
if ( !cm->show_frame )
|
||||
cpi->bits_off_target -= cpi->projected_frame_size;
|
||||
else
|
||||
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
||||
|
||||
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
||||
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
||||
@ -4349,33 +4344,7 @@ static void encode_frame_to_data_rate
|
||||
// Debug stats
|
||||
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
||||
|
||||
// Update the buffered average bitrate
|
||||
{
|
||||
long long numerator;
|
||||
|
||||
numerator = cpi->oxcf.maximum_buffer_size
|
||||
- cpi->buffered_av_per_frame_bandwidth
|
||||
+ cpi->projected_frame_size;
|
||||
numerator *= cpi->buffered_av_per_frame_bandwidth;
|
||||
cpi->buffered_av_per_frame_bandwidth = numerator
|
||||
/ cpi->oxcf.maximum_buffer_size;
|
||||
}
|
||||
|
||||
{
|
||||
long long tmp = (long long)cpi->buffered_av_per_frame_bandwidth
|
||||
* cpi->oxcf.maximum_buffer_size
|
||||
/ cpi->av_per_frame_bandwidth;
|
||||
cpi->buffer_level = cpi->oxcf.maximum_buffer_size
|
||||
- tmp
|
||||
+ cpi->oxcf.optimal_buffer_level;
|
||||
}
|
||||
|
||||
// Accumulate overshoot error.
|
||||
cpi->accumulated_overshoot +=
|
||||
(cpi->projected_frame_size > cpi->av_per_frame_bandwidth)
|
||||
? cpi->projected_frame_size - cpi->av_per_frame_bandwidth
|
||||
: 0;
|
||||
|
||||
cpi->buffer_level = cpi->bits_off_target;
|
||||
|
||||
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
||||
if (cm->frame_type == KEY_FRAME)
|
||||
|
@ -355,10 +355,6 @@ typedef struct VP8_COMP
|
||||
int per_frame_bandwidth; // Current section per frame bandwidth target
|
||||
int av_per_frame_bandwidth; // Average frame size target for clip
|
||||
int min_frame_bandwidth; // Minimum allocation that should be used for any frame
|
||||
int buffered_av_per_frame_bandwidth; // Average bitrate over the last buffer
|
||||
int buffered_av_per_frame_bandwidth_rem; // Average bitrate remainder
|
||||
int accumulated_overshoot; // Accumulated # of bits spent > target
|
||||
|
||||
int inter_frame_target;
|
||||
double output_frame_rate;
|
||||
long long last_time_stamp_seen;
|
||||
|
@ -650,10 +650,10 @@ static void calc_gf_params(VP8_COMP *cpi)
|
||||
|
||||
static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
{
|
||||
int min_frame_target, max_frame_target;
|
||||
int min_frame_target;
|
||||
int Adjustment;
|
||||
|
||||
min_frame_target = 1;
|
||||
min_frame_target = 0;
|
||||
|
||||
if (cpi->pass == 2)
|
||||
{
|
||||
@ -661,19 +661,10 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
|
||||
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
||||
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
||||
|
||||
max_frame_target = INT_MAX;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
||||
min_frame_target = cpi->per_frame_bandwidth / 4;
|
||||
else if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
||||
min_frame_target = cpi->per_frame_bandwidth / 4;
|
||||
|
||||
/* Don't allow the target to completely deplete the buffer. */
|
||||
max_frame_target = cpi->buffer_level + cpi->av_per_frame_bandwidth;
|
||||
if(max_frame_target < min_frame_target)
|
||||
max_frame_target = min_frame_target;
|
||||
}
|
||||
|
||||
// Special alt reference frame case
|
||||
if (cpi->common.refresh_alt_ref_frame)
|
||||
@ -1166,32 +1157,6 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (cpi->pass==0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER){
|
||||
/* determine the accumulated error to apply to this frame. Apply
|
||||
* more of the error when we've been undershooting, less when
|
||||
* we've been overshooting
|
||||
*/
|
||||
long long adjust;
|
||||
int bitrate_error;
|
||||
|
||||
bitrate_error = cpi->av_per_frame_bandwidth
|
||||
- cpi->buffered_av_per_frame_bandwidth;
|
||||
|
||||
adjust = cpi->accumulated_overshoot;
|
||||
adjust *= cpi->av_per_frame_bandwidth + bitrate_error;
|
||||
adjust /= cpi->oxcf.maximum_buffer_size;
|
||||
if (adjust > (cpi->this_frame_target - min_frame_target))
|
||||
adjust = (cpi->this_frame_target - min_frame_target);
|
||||
else if (adjust < 0)
|
||||
adjust = 0;
|
||||
|
||||
cpi->this_frame_target -= adjust;
|
||||
cpi->accumulated_overshoot -= adjust;
|
||||
}
|
||||
|
||||
if(cpi->this_frame_target > max_frame_target)
|
||||
cpi->this_frame_target = max_frame_target;
|
||||
}
|
||||
|
||||
|
||||
|
310
vpxenc.c
310
vpxenc.c
@ -23,6 +23,7 @@
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
#include "vpx/vpx_encoder.h"
|
||||
#if USE_POSIX_MMAP
|
||||
#include <sys/types.h>
|
||||
@ -913,12 +914,16 @@ static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1,
|
||||
"Stream frame rate (rate/scale)");
|
||||
static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0,
|
||||
"Output IVF (default is WebM)");
|
||||
static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1,
|
||||
"Show quantizer histogram (n-buckets)");
|
||||
static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1,
|
||||
"Show rate histogram (n-buckets)");
|
||||
static const arg_def_t *main_args[] =
|
||||
{
|
||||
&debugmode,
|
||||
&outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &deadline,
|
||||
&best_dl, &good_dl, &rt_dl,
|
||||
&verbosearg, &psnrarg, &use_ivf,
|
||||
&verbosearg, &psnrarg, &use_ivf, &q_hist_n, &rate_hist_n,
|
||||
NULL
|
||||
};
|
||||
|
||||
@ -1111,6 +1116,281 @@ static void usage_exit()
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
#define HIST_BAR_MAX 40
|
||||
struct hist_bucket
|
||||
{
|
||||
int low, high, count;
|
||||
};
|
||||
|
||||
|
||||
static int merge_hist_buckets(struct hist_bucket *bucket,
|
||||
int *buckets_,
|
||||
int max_buckets)
|
||||
{
|
||||
int small_bucket = 0, merge_bucket = INT_MAX, big_bucket=0;
|
||||
int buckets = *buckets_;
|
||||
int i;
|
||||
|
||||
/* Find the extrema for this list of buckets */
|
||||
big_bucket = small_bucket = 0;
|
||||
for(i=0; i < buckets; i++)
|
||||
{
|
||||
if(bucket[i].count < bucket[small_bucket].count)
|
||||
small_bucket = i;
|
||||
if(bucket[i].count > bucket[big_bucket].count)
|
||||
big_bucket = i;
|
||||
}
|
||||
|
||||
/* If we have too many buckets, merge the smallest with an ajacent
|
||||
* bucket.
|
||||
*/
|
||||
while(buckets > max_buckets)
|
||||
{
|
||||
int last_bucket = buckets - 1;
|
||||
|
||||
// merge the small bucket with an adjacent one.
|
||||
if(small_bucket == 0)
|
||||
merge_bucket = 1;
|
||||
else if(small_bucket == last_bucket)
|
||||
merge_bucket = last_bucket - 1;
|
||||
else if(bucket[small_bucket - 1].count < bucket[small_bucket + 1].count)
|
||||
merge_bucket = small_bucket - 1;
|
||||
else
|
||||
merge_bucket = small_bucket + 1;
|
||||
|
||||
assert(abs(merge_bucket - small_bucket) <= 1);
|
||||
assert(small_bucket < buckets);
|
||||
assert(big_bucket < buckets);
|
||||
assert(merge_bucket < buckets);
|
||||
|
||||
if(merge_bucket < small_bucket)
|
||||
{
|
||||
bucket[merge_bucket].high = bucket[small_bucket].high;
|
||||
bucket[merge_bucket].count += bucket[small_bucket].count;
|
||||
}
|
||||
else
|
||||
{
|
||||
bucket[small_bucket].high = bucket[merge_bucket].high;
|
||||
bucket[small_bucket].count += bucket[merge_bucket].count;
|
||||
merge_bucket = small_bucket;
|
||||
}
|
||||
|
||||
assert(bucket[merge_bucket].low != bucket[merge_bucket].high);
|
||||
|
||||
buckets--;
|
||||
|
||||
/* Remove the merge_bucket from the list, and find the new small
|
||||
* and big buckets while we're at it
|
||||
*/
|
||||
big_bucket = small_bucket = 0;
|
||||
for(i=0; i < buckets; i++)
|
||||
{
|
||||
if(i > merge_bucket)
|
||||
bucket[i] = bucket[i+1];
|
||||
|
||||
if(bucket[i].count < bucket[small_bucket].count)
|
||||
small_bucket = i;
|
||||
if(bucket[i].count > bucket[big_bucket].count)
|
||||
big_bucket = i;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
*buckets_ = buckets;
|
||||
return bucket[big_bucket].count;
|
||||
}
|
||||
|
||||
|
||||
static void show_histogram(const struct hist_bucket *bucket,
|
||||
int buckets,
|
||||
int total,
|
||||
int scale)
|
||||
{
|
||||
const char *pat1, *pat2;
|
||||
int i;
|
||||
|
||||
switch((int)(log(bucket[buckets-1].high)/log(10))+1)
|
||||
{
|
||||
case 1:
|
||||
case 2:
|
||||
pat1 = "%4d %2s: ";
|
||||
pat2 = "%4d-%2d: ";
|
||||
break;
|
||||
case 3:
|
||||
pat1 = "%5d %3s: ";
|
||||
pat2 = "%5d-%3d: ";
|
||||
break;
|
||||
case 4:
|
||||
pat1 = "%6d %4s: ";
|
||||
pat2 = "%6d-%4d: ";
|
||||
break;
|
||||
case 5:
|
||||
pat1 = "%7d %5s: ";
|
||||
pat2 = "%7d-%5d: ";
|
||||
break;
|
||||
case 6:
|
||||
pat1 = "%8d %6s: ";
|
||||
pat2 = "%8d-%6d: ";
|
||||
break;
|
||||
case 7:
|
||||
pat1 = "%9d %7s: ";
|
||||
pat2 = "%9d-%7d: ";
|
||||
break;
|
||||
default:
|
||||
pat1 = "%12d %10s: ";
|
||||
pat2 = "%12d-%10d: ";
|
||||
break;
|
||||
}
|
||||
|
||||
for(i=0; i<buckets; i++)
|
||||
{
|
||||
int len;
|
||||
int j;
|
||||
float pct;
|
||||
|
||||
pct = 100.0 * (float)bucket[i].count / (float)total;
|
||||
len = HIST_BAR_MAX * bucket[i].count / scale;
|
||||
if(len < 1)
|
||||
len = 1;
|
||||
assert(len <= HIST_BAR_MAX);
|
||||
|
||||
if(bucket[i].low == bucket[i].high)
|
||||
fprintf(stderr, pat1, bucket[i].low, "");
|
||||
else
|
||||
fprintf(stderr, pat2, bucket[i].low, bucket[i].high);
|
||||
|
||||
for(j=0; j<HIST_BAR_MAX; j++)
|
||||
fprintf(stderr, j<len?"=":" ");
|
||||
fprintf(stderr, "\t%5d (%6.2f%%)\n",bucket[i].count,pct);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void show_q_histogram(const int counts[64], int max_buckets)
|
||||
{
|
||||
struct hist_bucket bucket[64];
|
||||
int buckets = 0;
|
||||
int total = 0;
|
||||
int scale;
|
||||
int i;
|
||||
|
||||
|
||||
for(i=0; i<64; i++)
|
||||
{
|
||||
if(counts[i])
|
||||
{
|
||||
bucket[buckets].low = bucket[buckets].high = i;
|
||||
bucket[buckets].count = counts[i];
|
||||
buckets++;
|
||||
total += counts[i];
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "\nQuantizer Selection:\n");
|
||||
scale = merge_hist_buckets(bucket, &buckets, max_buckets);
|
||||
show_histogram(bucket, buckets, total, scale);
|
||||
}
|
||||
|
||||
|
||||
#define RATE_BINS (100)
|
||||
struct rate_hist
|
||||
{
|
||||
int64_t *pts;
|
||||
int *sz;
|
||||
int samples;
|
||||
int frames;
|
||||
struct hist_bucket bucket[RATE_BINS];
|
||||
int total;
|
||||
};
|
||||
|
||||
|
||||
static void init_rate_histogram(struct rate_hist *hist,
|
||||
const vpx_codec_enc_cfg_t *cfg)
|
||||
{
|
||||
int i;
|
||||
|
||||
hist->samples = cfg->rc_buf_sz * 60 / 1000; // max 60 fps
|
||||
hist->pts = calloc(hist->samples, sizeof(*hist->pts));
|
||||
hist->sz = calloc(hist->samples, sizeof(*hist->sz));
|
||||
for(i=0; i<RATE_BINS; i++)
|
||||
{
|
||||
hist->bucket[i].low = INT_MAX;
|
||||
hist->bucket[i].high = 0;
|
||||
hist->bucket[i].count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void destroy_rate_histogram(struct rate_hist *hist)
|
||||
{
|
||||
free(hist->pts);
|
||||
free(hist->sz);
|
||||
}
|
||||
|
||||
|
||||
static void update_rate_histogram(struct rate_hist *hist,
|
||||
const vpx_codec_enc_cfg_t *cfg,
|
||||
const vpx_codec_cx_pkt_t *pkt)
|
||||
{
|
||||
int i, idx;
|
||||
int64_t now, then, sum_sz = 0, avg_bitrate;
|
||||
|
||||
now = pkt->data.frame.pts * 1000
|
||||
* (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den;
|
||||
|
||||
idx = hist->frames++ % hist->samples;
|
||||
hist->pts[idx] = now;
|
||||
hist->sz[idx] = pkt->data.frame.sz;
|
||||
|
||||
if(now < cfg->rc_buf_initial_sz)
|
||||
return;
|
||||
|
||||
/* Sum the size over the past rc_buf_sz ms */
|
||||
for(i = hist->frames; i > 0; i--)
|
||||
{
|
||||
int i_idx = (i-1) % hist->samples;
|
||||
|
||||
then = hist->pts[i_idx];
|
||||
if(now - then > cfg->rc_buf_sz)
|
||||
break;
|
||||
sum_sz += hist->sz[i_idx];
|
||||
}
|
||||
|
||||
avg_bitrate = sum_sz * 8 * 1000 / (now - then);
|
||||
idx = avg_bitrate * (RATE_BINS/2) / (cfg->rc_target_bitrate * 1000);
|
||||
if(idx < 0)
|
||||
idx = 0;
|
||||
if(idx > RATE_BINS-1)
|
||||
idx = RATE_BINS-1;
|
||||
if(hist->bucket[idx].low > avg_bitrate)
|
||||
hist->bucket[idx].low = avg_bitrate;
|
||||
if(hist->bucket[idx].high < avg_bitrate)
|
||||
hist->bucket[idx].high = avg_bitrate;
|
||||
hist->bucket[idx].count++;
|
||||
hist->total++;
|
||||
}
|
||||
|
||||
|
||||
static void show_rate_histogram(struct rate_hist *hist,
|
||||
const vpx_codec_enc_cfg_t *cfg,
|
||||
int max_buckets)
|
||||
{
|
||||
int i, scale;
|
||||
int buckets = 0;
|
||||
|
||||
for(i = 0; i < RATE_BINS; i++)
|
||||
{
|
||||
if(hist->bucket[i].low == INT_MAX)
|
||||
continue;
|
||||
hist->bucket[buckets++] = hist->bucket[i];
|
||||
}
|
||||
|
||||
fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz);
|
||||
scale = merge_hist_buckets(hist->bucket, &buckets, max_buckets);
|
||||
show_histogram(hist->bucket, buckets, hist->total, scale);
|
||||
}
|
||||
|
||||
#define ARG_CTRL_CNT_MAX 10
|
||||
|
||||
int main(int argc, const char **argv_)
|
||||
@ -1149,6 +1429,10 @@ int main(int argc, const char **argv_)
|
||||
double psnr_totals[4] = {0, 0, 0, 0};
|
||||
int psnr_count = 0;
|
||||
stereo_format_t stereo_fmt = STEREO_FORMAT_MONO;
|
||||
int counts[64]={0};
|
||||
int show_q_hist_buckets=0;
|
||||
int show_rate_hist_buckets=0;
|
||||
struct rate_hist rate_hist={0};
|
||||
|
||||
exec_name = argv_[0];
|
||||
ebml.last_pts_ms = -1;
|
||||
@ -1232,6 +1516,10 @@ int main(int argc, const char **argv_)
|
||||
out_fn = arg.val;
|
||||
else if (arg_match(&arg, &debugmode, argi))
|
||||
ebml.debug = 1;
|
||||
else if (arg_match(&arg, &q_hist_n, argi))
|
||||
show_q_hist_buckets = arg_parse_uint(&arg);
|
||||
else if (arg_match(&arg, &rate_hist_n, argi))
|
||||
show_rate_hist_buckets = arg_parse_uint(&arg);
|
||||
else
|
||||
argj++;
|
||||
}
|
||||
@ -1419,6 +1707,8 @@ int main(int argc, const char **argv_)
|
||||
|
||||
memset(&stats, 0, sizeof(stats));
|
||||
|
||||
init_rate_histogram(&rate_hist, &cfg);
|
||||
|
||||
for (pass = one_pass_only ? one_pass_only - 1 : 0; pass < arg_passes; pass++)
|
||||
{
|
||||
int frames_in = 0, frames_out = 0;
|
||||
@ -1656,6 +1946,16 @@ int main(int argc, const char **argv_)
|
||||
vpx_usec_timer_mark(&timer);
|
||||
cx_time += vpx_usec_timer_elapsed(&timer);
|
||||
ctx_exit_on_error(&encoder, "Failed to encode frame");
|
||||
|
||||
if(cfg.g_pass != VPX_RC_FIRST_PASS)
|
||||
{
|
||||
int q;
|
||||
|
||||
vpx_codec_control(&encoder, VP8E_GET_LAST_QUANTIZER_64, &q);
|
||||
ctx_exit_on_error(&encoder, "Failed to read quantizer");
|
||||
counts[q]++;
|
||||
}
|
||||
|
||||
got_data = 0;
|
||||
|
||||
while ((pkt = vpx_codec_get_cx_data(&encoder, &iter)))
|
||||
@ -1669,6 +1969,7 @@ int main(int argc, const char **argv_)
|
||||
fprintf(stderr, " %6luF",
|
||||
(unsigned long)pkt->data.frame.sz);
|
||||
|
||||
update_rate_histogram(&rate_hist, &cfg, pkt);
|
||||
if(write_webm)
|
||||
{
|
||||
/* Update the hash */
|
||||
@ -1766,6 +2067,13 @@ int main(int argc, const char **argv_)
|
||||
break;
|
||||
}
|
||||
|
||||
if (show_q_hist_buckets)
|
||||
show_q_histogram(counts, show_q_hist_buckets);
|
||||
|
||||
if (show_rate_hist_buckets)
|
||||
show_rate_histogram(&rate_hist, &cfg, show_rate_hist_buckets);
|
||||
destroy_rate_histogram(&rate_hist);
|
||||
|
||||
vpx_img_free(&raw);
|
||||
free(argv);
|
||||
return EXIT_SUCCESS;
|
||||
|
Loading…
x
Reference in New Issue
Block a user