Refactor vp10_fwd_txfm2d_test.cc
Change-Id: Ibaf7b00bfe247df3e665ea3a0241667cb130e16c
This commit is contained in:
		@@ -190,6 +190,7 @@ LIBVPX_TEST_SRCS-$(CONFIG_VP9_HIGHBITDEPTH) += hbd_metrics_test.cc
 | 
			
		||||
endif
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += sad_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10) += vp10_txfm_test.h
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10) += vp10_txfm_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10) += vp10_fwd_txfm1d_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10) += vp10_inv_txfm1d_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10) += vp10_fwd_txfm2d_test.cc
 | 
			
		||||
 
 | 
			
		||||
@@ -13,6 +13,7 @@
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
#include "test/acm_random.h"
 | 
			
		||||
#include "test/util.h"
 | 
			
		||||
#include "test/vp10_txfm_test.h"
 | 
			
		||||
#include "vp10/common/vp10_txfm.h"
 | 
			
		||||
#include "./vp10_rtcd.h"
 | 
			
		||||
@@ -23,80 +24,127 @@ using libvpx_test::bd;
 | 
			
		||||
using libvpx_test::compute_avg_abs_error;
 | 
			
		||||
using libvpx_test::Fwd_Txfm2d_Func;
 | 
			
		||||
using libvpx_test::TYPE_TXFM;
 | 
			
		||||
using libvpx_test::TYPE_DCT;
 | 
			
		||||
using libvpx_test::TYPE_ADST;
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
const Fwd_Txfm2d_Func fwd_txfm_func_ls[TX_SIZES] = {
 | 
			
		||||
    vp10_fwd_txfm2d_4x4_c, vp10_fwd_txfm2d_8x8_c, vp10_fwd_txfm2d_16x16_c,
 | 
			
		||||
    vp10_fwd_txfm2d_32x32_c};
 | 
			
		||||
 | 
			
		||||
const TYPE_TXFM type_ls_0[4] = {TYPE_DCT, TYPE_ADST, TYPE_DCT, TYPE_ADST};
 | 
			
		||||
const TYPE_TXFM type_ls_1[4] = {TYPE_DCT, TYPE_DCT, TYPE_ADST, TYPE_ADST};
 | 
			
		||||
// VP10FwdTxfm2dParam argument list:
 | 
			
		||||
// tx_type_, tx_size_, max_error_, max_avg_error_
 | 
			
		||||
typedef std::tr1::tuple<TX_TYPE, TX_SIZE, double, double> VP10FwdTxfm2dParam;
 | 
			
		||||
 | 
			
		||||
TEST(vp10_fwd_txfm2d, accuracy) {
 | 
			
		||||
  for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) {
 | 
			
		||||
    int txfm_size = 1 << (tx_size + 2);
 | 
			
		||||
    int sqr_txfm_size = txfm_size * txfm_size;
 | 
			
		||||
    int16_t* input = new int16_t[sqr_txfm_size];
 | 
			
		||||
    int32_t* output = new int32_t[sqr_txfm_size];
 | 
			
		||||
    double* ref_input = new double[sqr_txfm_size];
 | 
			
		||||
    double* ref_output = new double[sqr_txfm_size];
 | 
			
		||||
class VP10FwdTxfm2d : public ::testing::TestWithParam<VP10FwdTxfm2dParam> {
 | 
			
		||||
 public:
 | 
			
		||||
  virtual void SetUp() {
 | 
			
		||||
    tx_type_ = GET_PARAM(0);
 | 
			
		||||
    tx_size_ = GET_PARAM(1);
 | 
			
		||||
    max_error_ = GET_PARAM(2);
 | 
			
		||||
    max_avg_error_ = GET_PARAM(3);
 | 
			
		||||
    count_ = 500;
 | 
			
		||||
    TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg =
 | 
			
		||||
        vp10_get_fwd_txfm_cfg(tx_type_, tx_size_);
 | 
			
		||||
    const TXFM_2D_CFG *fwd_txfm_cfg = fwd_txfm_flip_cfg.cfg;
 | 
			
		||||
    int amplify_bit = fwd_txfm_cfg->shift[0] + fwd_txfm_cfg->shift[1] +
 | 
			
		||||
                      fwd_txfm_cfg->shift[2];
 | 
			
		||||
    amplify_factor_ =
 | 
			
		||||
        amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
 | 
			
		||||
 | 
			
		||||
    for (int tx_type = 0; tx_type < 4; ++tx_type) {
 | 
			
		||||
      TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg =
 | 
			
		||||
          vp10_get_fwd_txfm_cfg(tx_type, tx_size);
 | 
			
		||||
      const TXFM_2D_CFG *fwd_txfm_cfg = fwd_txfm_flip_cfg.cfg;
 | 
			
		||||
      if (fwd_txfm_cfg != NULL) {
 | 
			
		||||
        Fwd_Txfm2d_Func fwd_txfm_func = fwd_txfm_func_ls[tx_size];
 | 
			
		||||
        TYPE_TXFM type0 = type_ls_0[tx_type];
 | 
			
		||||
        TYPE_TXFM type1 = type_ls_1[tx_type];
 | 
			
		||||
        int amplify_bit = fwd_txfm_cfg->shift[0] + fwd_txfm_cfg->shift[1] +
 | 
			
		||||
                          fwd_txfm_cfg->shift[2];
 | 
			
		||||
        double amplify_factor =
 | 
			
		||||
            amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
 | 
			
		||||
    fwd_txfm_ = fwd_txfm_func_ls[tx_size_];
 | 
			
		||||
    txfm1d_size_ = libvpx_test::get_txfm1d_size(tx_size_);
 | 
			
		||||
    txfm2d_size_ = txfm1d_size_ * txfm1d_size_;
 | 
			
		||||
    get_txfm1d_type(tx_type_, &type0_, &type1_);
 | 
			
		||||
    input_ = reinterpret_cast<int16_t *>
 | 
			
		||||
       (vpx_memalign(16, sizeof(int16_t) * txfm2d_size_));
 | 
			
		||||
    output_ = reinterpret_cast<int32_t *>
 | 
			
		||||
        (vpx_memalign(16, sizeof(int32_t) * txfm2d_size_));
 | 
			
		||||
    ref_input_ = reinterpret_cast<double *>
 | 
			
		||||
        (vpx_memalign(16, sizeof(double) * txfm2d_size_));
 | 
			
		||||
    ref_output_ = reinterpret_cast<double *>
 | 
			
		||||
        (vpx_memalign(16, sizeof(double) * txfm2d_size_));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
        ACMRandom rnd(ACMRandom::DeterministicSeed());
 | 
			
		||||
        int count = 500;
 | 
			
		||||
        double avg_abs_error = 0;
 | 
			
		||||
        for (int ci = 0; ci < count; ci++) {
 | 
			
		||||
          for (int ni = 0; ni < sqr_txfm_size; ++ni) {
 | 
			
		||||
            input[ni] = rnd.Rand16() % input_base;
 | 
			
		||||
            ref_input[ni] = static_cast<double>(input[ni]);
 | 
			
		||||
            output[ni] = 0;
 | 
			
		||||
            ref_output[ni] = 0;
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          fwd_txfm_func(input, output, txfm_size, tx_type, bd);
 | 
			
		||||
          reference_hybrid_2d(ref_input, ref_output, txfm_size, type0, type1);
 | 
			
		||||
 | 
			
		||||
          for (int ni = 0; ni < sqr_txfm_size; ++ni) {
 | 
			
		||||
            ref_output[ni] = round(ref_output[ni] * amplify_factor);
 | 
			
		||||
            EXPECT_LE(fabs(output[ni] - ref_output[ni]) / amplify_factor, 70);
 | 
			
		||||
          }
 | 
			
		||||
          avg_abs_error += compute_avg_abs_error<int32_t, double>(
 | 
			
		||||
              output, ref_output, sqr_txfm_size);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        avg_abs_error /= amplify_factor;
 | 
			
		||||
        avg_abs_error /= count;
 | 
			
		||||
        // max_abs_avg_error comes from upper bound of avg_abs_error
 | 
			
		||||
        // printf("type0: %d type1: %d txfm_size: %d accuracy_avg_abs_error:
 | 
			
		||||
        // %f\n",
 | 
			
		||||
        // type0, type1, txfm_size, avg_abs_error);
 | 
			
		||||
        double max_abs_avg_error = 7;
 | 
			
		||||
        EXPECT_LE(avg_abs_error, max_abs_avg_error);
 | 
			
		||||
  void RunFwdAccuracyCheck() {
 | 
			
		||||
    ACMRandom rnd(ACMRandom::DeterministicSeed());
 | 
			
		||||
    double avg_abs_error = 0;
 | 
			
		||||
    for (int ci = 0; ci < count_; ci++) {
 | 
			
		||||
      for (int ni = 0; ni < txfm2d_size_; ++ni) {
 | 
			
		||||
        input_[ni] = rnd.Rand16() % input_base;
 | 
			
		||||
        ref_input_[ni] = static_cast<double>(input_[ni]);
 | 
			
		||||
        output_[ni] = 0;
 | 
			
		||||
        ref_output_[ni] = 0;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      fwd_txfm_(input_, output_, txfm1d_size_, tx_type_, bd);
 | 
			
		||||
      reference_hybrid_2d(ref_input_, ref_output_, txfm1d_size_,
 | 
			
		||||
                          type0_, type1_);
 | 
			
		||||
 | 
			
		||||
      for (int ni = 0; ni < txfm2d_size_; ++ni) {
 | 
			
		||||
        ref_output_[ni] = round(ref_output_[ni] * amplify_factor_);
 | 
			
		||||
        EXPECT_GE(max_error_,
 | 
			
		||||
                  fabs(output_[ni] - ref_output_[ni]) / amplify_factor_);
 | 
			
		||||
      }
 | 
			
		||||
      avg_abs_error += compute_avg_abs_error<int32_t, double>(
 | 
			
		||||
          output_, ref_output_, txfm2d_size_);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    delete[] input;
 | 
			
		||||
    delete[] output;
 | 
			
		||||
    delete[] ref_input;
 | 
			
		||||
    delete[] ref_output;
 | 
			
		||||
    avg_abs_error /= amplify_factor_;
 | 
			
		||||
    avg_abs_error /= count_;
 | 
			
		||||
    // max_abs_avg_error comes from upper bound of avg_abs_error
 | 
			
		||||
    // printf("type0: %d type1: %d txfm_size: %d accuracy_avg_abs_error:
 | 
			
		||||
    // %f\n", type0_, type1_, txfm1d_size_, avg_abs_error);
 | 
			
		||||
    EXPECT_GE(max_avg_error_, avg_abs_error);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void TearDown() {
 | 
			
		||||
    vpx_free(input_);
 | 
			
		||||
    vpx_free(output_);
 | 
			
		||||
    vpx_free(ref_input_);
 | 
			
		||||
    vpx_free(ref_output_);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
  double max_error_;
 | 
			
		||||
  double max_avg_error_;
 | 
			
		||||
  int count_;
 | 
			
		||||
  double amplify_factor_;
 | 
			
		||||
  TX_TYPE tx_type_;
 | 
			
		||||
  TX_SIZE tx_size_;
 | 
			
		||||
  int txfm1d_size_;
 | 
			
		||||
  int txfm2d_size_;
 | 
			
		||||
  Fwd_Txfm2d_Func fwd_txfm_;
 | 
			
		||||
  TYPE_TXFM type0_;
 | 
			
		||||
  TYPE_TXFM type1_;
 | 
			
		||||
  int16_t* input_;
 | 
			
		||||
  int32_t* output_;
 | 
			
		||||
  double* ref_input_;
 | 
			
		||||
  double* ref_output_;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_P(VP10FwdTxfm2d, RunFwdAccuracyCheck) {
 | 
			
		||||
  RunFwdAccuracyCheck();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(
 | 
			
		||||
    C, VP10FwdTxfm2d,
 | 
			
		||||
    ::testing::Values(
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_DCT,   TX_4X4, 2, 0.2),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_DCT,  TX_4X4, 2, 0.2),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_ADST,  TX_4X4, 2, 0.2),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_ADST, TX_4X4, 2, 0.2),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_DCT,   TX_8X8, 5, 0.6),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_DCT,  TX_8X8, 5, 0.6),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_ADST,  TX_8X8, 5, 0.6),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_ADST, TX_8X8, 5, 0.6),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_DCT,   TX_16X16, 11, 1.5),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_DCT,  TX_16X16, 11, 1.5),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_ADST,  TX_16X16, 11, 1.5),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_ADST, TX_16X16, 11, 1.5),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_DCT,   TX_32X32, 70, 7),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_DCT,  TX_32X32, 70, 7),
 | 
			
		||||
        VP10FwdTxfm2dParam(DCT_ADST,  TX_32X32, 70, 7),
 | 
			
		||||
        VP10FwdTxfm2dParam(ADST_ADST, TX_32X32, 70, 7)));
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
 | 
			
		||||
}  // namespace
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										103
									
								
								test/vp10_txfm_test.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										103
									
								
								test/vp10_txfm_test.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,103 @@
 | 
			
		||||
/*
 | 
			
		||||
 *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
 | 
			
		||||
 *
 | 
			
		||||
 *  Use of this source code is governed by a BSD-style license
 | 
			
		||||
 *  that can be found in the LICENSE file in the root of the source
 | 
			
		||||
 *  tree. An additional intellectual property rights grant can be found
 | 
			
		||||
 *  in the file PATENTS.  All contributing project authors may
 | 
			
		||||
 *  be found in the AUTHORS file in the root of the source tree.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include "test/vp10_txfm_test.h"
 | 
			
		||||
 | 
			
		||||
namespace libvpx_test {
 | 
			
		||||
 | 
			
		||||
int get_txfm1d_size(TX_SIZE tx_size) {
 | 
			
		||||
  return 1 << (tx_size + 2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM* type0,
 | 
			
		||||
                     TYPE_TXFM* type1) {
 | 
			
		||||
  switch (txfm2d_type) {
 | 
			
		||||
    case DCT_DCT:
 | 
			
		||||
      *type0 = TYPE_DCT;
 | 
			
		||||
      *type1 = TYPE_DCT;
 | 
			
		||||
      break;
 | 
			
		||||
    case ADST_DCT:
 | 
			
		||||
      *type0 = TYPE_ADST;
 | 
			
		||||
      *type1 = TYPE_DCT;
 | 
			
		||||
      break;
 | 
			
		||||
    case DCT_ADST:
 | 
			
		||||
      *type0 = TYPE_DCT;
 | 
			
		||||
      *type1 = TYPE_ADST;
 | 
			
		||||
      break;
 | 
			
		||||
    case ADST_ADST:
 | 
			
		||||
      *type0 = TYPE_ADST;
 | 
			
		||||
      *type1 = TYPE_ADST;
 | 
			
		||||
      break;
 | 
			
		||||
    default:
 | 
			
		||||
      *type0 = TYPE_DCT;
 | 
			
		||||
      *type1 = TYPE_DCT;
 | 
			
		||||
      assert(0);
 | 
			
		||||
      break;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double invSqrt2 = 1 / pow(2, 0.5);
 | 
			
		||||
 | 
			
		||||
void reference_dct_1d(const double* in, double* out, int size) {
 | 
			
		||||
  for (int k = 0; k < size; ++k) {
 | 
			
		||||
    out[k] = 0;
 | 
			
		||||
    for (int n = 0; n < size; ++n) {
 | 
			
		||||
      out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (2 * size));
 | 
			
		||||
    }
 | 
			
		||||
    if (k == 0) out[k] = out[k] * invSqrt2;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void reference_adst_1d(const double* in, double* out, int size) {
 | 
			
		||||
  for (int k = 0; k < size; ++k) {
 | 
			
		||||
    out[k] = 0;
 | 
			
		||||
    for (int n = 0; n < size; ++n) {
 | 
			
		||||
      out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void reference_hybrid_1d(double* in, double* out, int size, int type) {
 | 
			
		||||
  if (type == TYPE_DCT)
 | 
			
		||||
    reference_dct_1d(in, out, size);
 | 
			
		||||
  else
 | 
			
		||||
    reference_adst_1d(in, out, size);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void reference_hybrid_2d(double* in, double* out, int size,
 | 
			
		||||
                         int type0, int type1) {
 | 
			
		||||
  double* tempOut = new double[size * size];
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    // out ->tempOut
 | 
			
		||||
    for (int c = 0; c < size; c++) {
 | 
			
		||||
      tempOut[r * size + c] = in[c * size + r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // dct each row: in -> out
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    // out ->tempOut
 | 
			
		||||
    for (int c = 0; c < size; c++) {
 | 
			
		||||
      tempOut[r * size + c] = out[c * size + r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type1);
 | 
			
		||||
  }
 | 
			
		||||
  delete[] tempOut;
 | 
			
		||||
}
 | 
			
		||||
}  // namespace libvpx_test
 | 
			
		||||
@@ -33,62 +33,19 @@ typedef enum {
 | 
			
		||||
  TYPE_LAST
 | 
			
		||||
} TYPE_TXFM;
 | 
			
		||||
 | 
			
		||||
static double invSqrt2 = 1 / pow(2, 0.5);
 | 
			
		||||
int get_txfm1d_size(TX_SIZE tx_size);
 | 
			
		||||
 | 
			
		||||
static void reference_dct_1d(const double* in, double* out, int size) {
 | 
			
		||||
  for (int k = 0; k < size; ++k) {
 | 
			
		||||
    out[k] = 0;
 | 
			
		||||
    for (int n = 0; n < size; ++n) {
 | 
			
		||||
      out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (2 * size));
 | 
			
		||||
    }
 | 
			
		||||
    if (k == 0) out[k] = out[k] * invSqrt2;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM* type0,
 | 
			
		||||
                     TYPE_TXFM* type1);
 | 
			
		||||
 | 
			
		||||
static void reference_adst_1d(const double* in, double* out, int size) {
 | 
			
		||||
  for (int k = 0; k < size; ++k) {
 | 
			
		||||
    out[k] = 0;
 | 
			
		||||
    for (int n = 0; n < size; ++n) {
 | 
			
		||||
      out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
void reference_dct_1d(const double* in, double* out, int size);
 | 
			
		||||
 | 
			
		||||
static void reference_hybrid_1d(double* in, double* out, int size, int type) {
 | 
			
		||||
  if (type == TYPE_DCT)
 | 
			
		||||
    reference_dct_1d(in, out, size);
 | 
			
		||||
  else
 | 
			
		||||
    reference_adst_1d(in, out, size);
 | 
			
		||||
}
 | 
			
		||||
void reference_adst_1d(const double* in, double* out, int size);
 | 
			
		||||
 | 
			
		||||
static INLINE void reference_hybrid_2d(double* in, double* out, int size,
 | 
			
		||||
                                       int type0, int type1) {
 | 
			
		||||
  double* tempOut = new double[size * size];
 | 
			
		||||
void reference_hybrid_1d(double* in, double* out, int size, int type);
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    // out ->tempOut
 | 
			
		||||
    for (int c = 0; c < size; c++) {
 | 
			
		||||
      tempOut[r * size + c] = in[c * size + r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // dct each row: in -> out
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    // out ->tempOut
 | 
			
		||||
    for (int c = 0; c < size; c++) {
 | 
			
		||||
      tempOut[r * size + c] = out[c * size + r];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int r = 0; r < size; r++) {
 | 
			
		||||
    reference_hybrid_1d(tempOut + r * size, out + r * size, size, type1);
 | 
			
		||||
  }
 | 
			
		||||
  delete[] tempOut;
 | 
			
		||||
}
 | 
			
		||||
void reference_hybrid_2d(double* in, double* out, int size,
 | 
			
		||||
                                       int type0, int type1);
 | 
			
		||||
 | 
			
		||||
template <typename Type1, typename Type2>
 | 
			
		||||
static double compute_avg_abs_error(const Type1* a, const Type2* b,
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user