Merge "arm idct: move to-be-shared code to header"

This commit is contained in:
Johann Koenig 2016-11-02 18:09:45 +00:00 committed by Gerrit Code Review
commit 5ac7a59a05
2 changed files with 277 additions and 285 deletions

View File

@ -12,126 +12,9 @@
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/arm/transpose_neon.h"
#include "vpx_dsp/arm/idct_neon.h"
#include "vpx_dsp/txfm_common.h"
// Multiply a by a_const. Saturate, shift and narrow by 14.
static int16x8_t multiply_shift_and_narrow(const int16x8_t a,
const int16_t a_const) {
// Shift by 14 + rounding will be within 16 bits for well formed streams.
// See WRAPLOW and dct_const_round_shift for details.
// This instruction doubles the result and returns the high half, essentially
// resulting in a right shift by 15. By multiplying the constant first that
// becomes a right shift by 14.
// The largest possible value used here is
// vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just*
// within the range of int16_t (+32767 / -32768) even when negated.
return vqrdmulhq_n_s16(a, a_const * 2);
}
// Add a and b, then multiply by ab_const. Shift and narrow by 14.
static int16x8_t add_multiply_shift_and_narrow(const int16x8_t a,
const int16x8_t b,
const int16_t ab_const) {
// In both add_ and its pair, sub_, the input for well-formed streams will be
// well within 16 bits (input to the idct is the difference between two frames
// and will be within -255 to 255, or 9 bits)
// However, for inputs over about 25,000 (valid for int16_t, but not for idct
// input) this function can not use vaddq_s16.
// In order to match existing behavior and intentionally out of range tests,
// expand the addition up to 32 bits to prevent truncation.
int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b));
int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b));
temp_low = vmulq_n_s32(temp_low, ab_const);
temp_high = vmulq_n_s32(temp_high, ab_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
// Subtract b from a, then multiply by ab_const. Shift and narrow by 14.
static int16x8_t sub_multiply_shift_and_narrow(const int16x8_t a,
const int16x8_t b,
const int16_t ab_const) {
int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b));
int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b));
temp_low = vmulq_n_s32(temp_low, ab_const);
temp_high = vmulq_n_s32(temp_high, ab_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
// Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by
// 14.
static int16x8_t multiply_accumulate_shift_and_narrow(const int16x8_t a,
const int16_t a_const,
const int16x8_t b,
const int16_t b_const) {
int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const);
int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const);
temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const);
temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
// Shift the output down by 6 and add it to the destination buffer.
static void add_and_store(const int16x8_t a0, const int16x8_t a1,
const int16x8_t a2, const int16x8_t a3,
const int16x8_t a4, const int16x8_t a5,
const int16x8_t a6, const int16x8_t a7, uint8_t *b,
const int b_stride) {
uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7;
int16x8_t c0, c1, c2, c3, c4, c5, c6, c7;
b0 = vld1_u8(b);
b += b_stride;
b1 = vld1_u8(b);
b += b_stride;
b2 = vld1_u8(b);
b += b_stride;
b3 = vld1_u8(b);
b += b_stride;
b4 = vld1_u8(b);
b += b_stride;
b5 = vld1_u8(b);
b += b_stride;
b6 = vld1_u8(b);
b += b_stride;
b7 = vld1_u8(b);
b -= (7 * b_stride);
// c = b + (a >> 6)
c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6);
c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6);
c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6);
c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6);
c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6);
c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6);
c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6);
c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6);
b0 = vqmovun_s16(c0);
b1 = vqmovun_s16(c1);
b2 = vqmovun_s16(c2);
b3 = vqmovun_s16(c3);
b4 = vqmovun_s16(c4);
b5 = vqmovun_s16(c5);
b6 = vqmovun_s16(c6);
b7 = vqmovun_s16(c7);
vst1_u8(b, b0);
b += b_stride;
vst1_u8(b, b1);
b += b_stride;
vst1_u8(b, b2);
b += b_stride;
vst1_u8(b, b3);
b += b_stride;
vst1_u8(b, b4);
b += b_stride;
vst1_u8(b, b5);
b += b_stride;
vst1_u8(b, b6);
b += b_stride;
vst1_u8(b, b7);
}
// Only for the first pass of the _34_ variant. Since it only uses values from
// the top left 8x8 it can safely assume all the remaining values are 0 and skip
// an awful lot of calculations. In fact, only the first 6 columns make the cut.
@ -163,66 +46,51 @@ static void idct32_6_neon(const int16_t *input, int16_t *output) {
s2_31;
int16x8_t s3_24, s3_25, s3_26, s3_27;
in0 = vld1q_s16(input);
input += 32;
in1 = vld1q_s16(input);
input += 32;
in2 = vld1q_s16(input);
input += 32;
in3 = vld1q_s16(input);
input += 32;
in4 = vld1q_s16(input);
input += 32;
in5 = vld1q_s16(input);
input += 32;
in6 = vld1q_s16(input);
input += 32;
in7 = vld1q_s16(input);
transpose_s16_8x8(&in0, &in1, &in2, &in3, &in4, &in5, &in6, &in7);
load_and_transpose_s16_8x8(input, 32, &in0, &in1, &in2, &in3, &in4, &in5,
&in6, &in7);
// stage 1
// input[1] * cospi_31_64 - input[31] * cospi_1_64 (but input[31] == 0)
s1_16 = multiply_shift_and_narrow(in1, cospi_31_64);
s1_16 = multiply_shift_and_narrow_s16(in1, cospi_31_64);
// input[1] * cospi_1_64 + input[31] * cospi_31_64 (but input[31] == 0)
s1_31 = multiply_shift_and_narrow(in1, cospi_1_64);
s1_31 = multiply_shift_and_narrow_s16(in1, cospi_1_64);
s1_20 = multiply_shift_and_narrow(in5, cospi_27_64);
s1_27 = multiply_shift_and_narrow(in5, cospi_5_64);
s1_20 = multiply_shift_and_narrow_s16(in5, cospi_27_64);
s1_27 = multiply_shift_and_narrow_s16(in5, cospi_5_64);
s1_23 = multiply_shift_and_narrow(in3, -cospi_29_64);
s1_24 = multiply_shift_and_narrow(in3, cospi_3_64);
s1_23 = multiply_shift_and_narrow_s16(in3, -cospi_29_64);
s1_24 = multiply_shift_and_narrow_s16(in3, cospi_3_64);
// stage 2
s2_8 = multiply_shift_and_narrow(in2, cospi_30_64);
s2_15 = multiply_shift_and_narrow(in2, cospi_2_64);
s2_8 = multiply_shift_and_narrow_s16(in2, cospi_30_64);
s2_15 = multiply_shift_and_narrow_s16(in2, cospi_2_64);
// stage 3
s1_4 = multiply_shift_and_narrow(in4, cospi_28_64);
s1_7 = multiply_shift_and_narrow(in4, cospi_4_64);
s1_4 = multiply_shift_and_narrow_s16(in4, cospi_28_64);
s1_7 = multiply_shift_and_narrow_s16(in4, cospi_4_64);
s1_17 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_4_64, s1_31,
cospi_28_64);
s1_30 = multiply_accumulate_shift_and_narrow(s1_16, cospi_28_64, s1_31,
cospi_4_64);
s1_17 = multiply_accumulate_shift_and_narrow_s16(s1_16, -cospi_4_64, s1_31,
cospi_28_64);
s1_30 = multiply_accumulate_shift_and_narrow_s16(s1_16, cospi_28_64, s1_31,
cospi_4_64);
s1_21 = multiply_accumulate_shift_and_narrow(s1_20, -cospi_20_64, s1_27,
cospi_12_64);
s1_26 = multiply_accumulate_shift_and_narrow(s1_20, cospi_12_64, s1_27,
cospi_20_64);
s1_21 = multiply_accumulate_shift_and_narrow_s16(s1_20, -cospi_20_64, s1_27,
cospi_12_64);
s1_26 = multiply_accumulate_shift_and_narrow_s16(s1_20, cospi_12_64, s1_27,
cospi_20_64);
s1_22 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_12_64, s1_24,
-cospi_20_64);
s1_25 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_20_64, s1_24,
cospi_12_64);
s1_22 = multiply_accumulate_shift_and_narrow_s16(s1_23, -cospi_12_64, s1_24,
-cospi_20_64);
s1_25 = multiply_accumulate_shift_and_narrow_s16(s1_23, -cospi_20_64, s1_24,
cospi_12_64);
// stage 4
s1_0 = multiply_shift_and_narrow(in0, cospi_16_64);
s1_0 = multiply_shift_and_narrow_s16(in0, cospi_16_64);
s2_9 = multiply_accumulate_shift_and_narrow(s2_8, -cospi_8_64, s2_15,
cospi_24_64);
s2_14 = multiply_accumulate_shift_and_narrow(s2_8, cospi_24_64, s2_15,
cospi_8_64);
s2_9 = multiply_accumulate_shift_and_narrow_s16(s2_8, -cospi_8_64, s2_15,
cospi_24_64);
s2_14 = multiply_accumulate_shift_and_narrow_s16(s2_8, cospi_24_64, s2_15,
cospi_8_64);
s2_20 = vsubq_s16(s1_23, s1_20);
s2_21 = vsubq_s16(s1_22, s1_21);
@ -234,28 +102,28 @@ static void idct32_6_neon(const int16_t *input, int16_t *output) {
s2_27 = vsubq_s16(s1_24, s1_27);
// stage 5
s1_5 = sub_multiply_shift_and_narrow(s1_7, s1_4, cospi_16_64);
s1_6 = add_multiply_shift_and_narrow(s1_4, s1_7, cospi_16_64);
s1_5 = sub_multiply_shift_and_narrow_s16(s1_7, s1_4, cospi_16_64);
s1_6 = add_multiply_shift_and_narrow_s16(s1_4, s1_7, cospi_16_64);
s1_18 = multiply_accumulate_shift_and_narrow(s1_17, -cospi_8_64, s1_30,
cospi_24_64);
s1_29 = multiply_accumulate_shift_and_narrow(s1_17, cospi_24_64, s1_30,
cospi_8_64);
s1_18 = multiply_accumulate_shift_and_narrow_s16(s1_17, -cospi_8_64, s1_30,
cospi_24_64);
s1_29 = multiply_accumulate_shift_and_narrow_s16(s1_17, cospi_24_64, s1_30,
cospi_8_64);
s1_19 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_8_64, s1_31,
cospi_24_64);
s1_28 = multiply_accumulate_shift_and_narrow(s1_16, cospi_24_64, s1_31,
cospi_8_64);
s1_19 = multiply_accumulate_shift_and_narrow_s16(s1_16, -cospi_8_64, s1_31,
cospi_24_64);
s1_28 = multiply_accumulate_shift_and_narrow_s16(s1_16, cospi_24_64, s1_31,
cospi_8_64);
s1_20 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_24_64, s2_27,
-cospi_8_64);
s1_27 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_8_64, s2_27,
cospi_24_64);
s1_20 = multiply_accumulate_shift_and_narrow_s16(s2_20, -cospi_24_64, s2_27,
-cospi_8_64);
s1_27 = multiply_accumulate_shift_and_narrow_s16(s2_20, -cospi_8_64, s2_27,
cospi_24_64);
s1_21 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_24_64, s2_26,
-cospi_8_64);
s1_26 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_8_64, s2_26,
cospi_24_64);
s1_21 = multiply_accumulate_shift_and_narrow_s16(s2_21, -cospi_24_64, s2_26,
-cospi_8_64);
s1_26 = multiply_accumulate_shift_and_narrow_s16(s2_21, -cospi_8_64, s2_26,
cospi_24_64);
// stage 6
s2_0 = vaddq_s16(s1_0, s1_7);
@ -267,11 +135,11 @@ static void idct32_6_neon(const int16_t *input, int16_t *output) {
s2_6 = vsubq_s16(s1_0, s1_6);
s2_7 = vsubq_s16(s1_0, s1_7);
s2_10 = sub_multiply_shift_and_narrow(s2_14, s2_9, cospi_16_64);
s2_13 = add_multiply_shift_and_narrow(s2_9, s2_14, cospi_16_64);
s2_10 = sub_multiply_shift_and_narrow_s16(s2_14, s2_9, cospi_16_64);
s2_13 = add_multiply_shift_and_narrow_s16(s2_9, s2_14, cospi_16_64);
s2_11 = sub_multiply_shift_and_narrow(s2_15, s2_8, cospi_16_64);
s2_12 = add_multiply_shift_and_narrow(s2_8, s2_15, cospi_16_64);
s2_11 = sub_multiply_shift_and_narrow_s16(s2_15, s2_8, cospi_16_64);
s2_12 = add_multiply_shift_and_narrow_s16(s2_8, s2_15, cospi_16_64);
s2_16 = vaddq_s16(s1_16, s2_23);
s2_17 = vaddq_s16(s1_17, s2_22);
@ -309,17 +177,17 @@ static void idct32_6_neon(const int16_t *input, int16_t *output) {
s1_14 = vsubq_s16(s2_1, s2_14);
s1_15 = vsubq_s16(s2_0, s2_15);
s1_20 = sub_multiply_shift_and_narrow(s3_27, s2_20, cospi_16_64);
s1_27 = add_multiply_shift_and_narrow(s2_20, s3_27, cospi_16_64);
s1_20 = sub_multiply_shift_and_narrow_s16(s3_27, s2_20, cospi_16_64);
s1_27 = add_multiply_shift_and_narrow_s16(s2_20, s3_27, cospi_16_64);
s1_21 = sub_multiply_shift_and_narrow(s3_26, s2_21, cospi_16_64);
s1_26 = add_multiply_shift_and_narrow(s2_21, s3_26, cospi_16_64);
s1_21 = sub_multiply_shift_and_narrow_s16(s3_26, s2_21, cospi_16_64);
s1_26 = add_multiply_shift_and_narrow_s16(s2_21, s3_26, cospi_16_64);
s1_22 = sub_multiply_shift_and_narrow(s3_25, s2_22, cospi_16_64);
s1_25 = add_multiply_shift_and_narrow(s2_22, s3_25, cospi_16_64);
s1_22 = sub_multiply_shift_and_narrow_s16(s3_25, s2_22, cospi_16_64);
s1_25 = add_multiply_shift_and_narrow_s16(s2_22, s3_25, cospi_16_64);
s1_23 = sub_multiply_shift_and_narrow(s3_24, s2_23, cospi_16_64);
s1_24 = add_multiply_shift_and_narrow(s2_23, s3_24, cospi_16_64);
s1_23 = sub_multiply_shift_and_narrow_s16(s3_24, s2_23, cospi_16_64);
s1_24 = add_multiply_shift_and_narrow_s16(s2_23, s3_24, cospi_16_64);
// final stage
vst1q_s16(output, vaddq_s16(s1_0, s2_31));
@ -403,82 +271,67 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
s2_31;
int16x8_t s3_24, s3_25, s3_26, s3_27;
in0 = vld1q_s16(input);
input += 8;
in1 = vld1q_s16(input);
input += 8;
in2 = vld1q_s16(input);
input += 8;
in3 = vld1q_s16(input);
input += 8;
in4 = vld1q_s16(input);
input += 8;
in5 = vld1q_s16(input);
input += 8;
in6 = vld1q_s16(input);
input += 8;
in7 = vld1q_s16(input);
transpose_s16_8x8(&in0, &in1, &in2, &in3, &in4, &in5, &in6, &in7);
load_and_transpose_s16_8x8(input, 8, &in0, &in1, &in2, &in3, &in4, &in5, &in6,
&in7);
// stage 1
s1_16 = multiply_shift_and_narrow(in1, cospi_31_64);
s1_31 = multiply_shift_and_narrow(in1, cospi_1_64);
s1_16 = multiply_shift_and_narrow_s16(in1, cospi_31_64);
s1_31 = multiply_shift_and_narrow_s16(in1, cospi_1_64);
// Different for _8_
s1_19 = multiply_shift_and_narrow(in7, -cospi_25_64);
s1_28 = multiply_shift_and_narrow(in7, cospi_7_64);
s1_19 = multiply_shift_and_narrow_s16(in7, -cospi_25_64);
s1_28 = multiply_shift_and_narrow_s16(in7, cospi_7_64);
s1_20 = multiply_shift_and_narrow(in5, cospi_27_64);
s1_27 = multiply_shift_and_narrow(in5, cospi_5_64);
s1_20 = multiply_shift_and_narrow_s16(in5, cospi_27_64);
s1_27 = multiply_shift_and_narrow_s16(in5, cospi_5_64);
s1_23 = multiply_shift_and_narrow(in3, -cospi_29_64);
s1_24 = multiply_shift_and_narrow(in3, cospi_3_64);
s1_23 = multiply_shift_and_narrow_s16(in3, -cospi_29_64);
s1_24 = multiply_shift_and_narrow_s16(in3, cospi_3_64);
// stage 2
s2_8 = multiply_shift_and_narrow(in2, cospi_30_64);
s2_15 = multiply_shift_and_narrow(in2, cospi_2_64);
s2_8 = multiply_shift_and_narrow_s16(in2, cospi_30_64);
s2_15 = multiply_shift_and_narrow_s16(in2, cospi_2_64);
s2_11 = multiply_shift_and_narrow(in6, -cospi_26_64);
s2_12 = multiply_shift_and_narrow(in6, cospi_6_64);
s2_11 = multiply_shift_and_narrow_s16(in6, -cospi_26_64);
s2_12 = multiply_shift_and_narrow_s16(in6, cospi_6_64);
// stage 3
s1_4 = multiply_shift_and_narrow(in4, cospi_28_64);
s1_7 = multiply_shift_and_narrow(in4, cospi_4_64);
s1_4 = multiply_shift_and_narrow_s16(in4, cospi_28_64);
s1_7 = multiply_shift_and_narrow_s16(in4, cospi_4_64);
s1_17 = multiply_accumulate_shift_and_narrow(s1_16, -cospi_4_64, s1_31,
cospi_28_64);
s1_30 = multiply_accumulate_shift_and_narrow(s1_16, cospi_28_64, s1_31,
cospi_4_64);
s1_17 = multiply_accumulate_shift_and_narrow_s16(s1_16, -cospi_4_64, s1_31,
cospi_28_64);
s1_30 = multiply_accumulate_shift_and_narrow_s16(s1_16, cospi_28_64, s1_31,
cospi_4_64);
// Different for _8_
s1_18 = multiply_accumulate_shift_and_narrow(s1_19, -cospi_28_64, s1_28,
-cospi_4_64);
s1_29 = multiply_accumulate_shift_and_narrow(s1_19, -cospi_4_64, s1_28,
cospi_28_64);
s1_18 = multiply_accumulate_shift_and_narrow_s16(s1_19, -cospi_28_64, s1_28,
-cospi_4_64);
s1_29 = multiply_accumulate_shift_and_narrow_s16(s1_19, -cospi_4_64, s1_28,
cospi_28_64);
s1_21 = multiply_accumulate_shift_and_narrow(s1_20, -cospi_20_64, s1_27,
cospi_12_64);
s1_26 = multiply_accumulate_shift_and_narrow(s1_20, cospi_12_64, s1_27,
cospi_20_64);
s1_21 = multiply_accumulate_shift_and_narrow_s16(s1_20, -cospi_20_64, s1_27,
cospi_12_64);
s1_26 = multiply_accumulate_shift_and_narrow_s16(s1_20, cospi_12_64, s1_27,
cospi_20_64);
s1_22 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_12_64, s1_24,
-cospi_20_64);
s1_25 = multiply_accumulate_shift_and_narrow(s1_23, -cospi_20_64, s1_24,
cospi_12_64);
s1_22 = multiply_accumulate_shift_and_narrow_s16(s1_23, -cospi_12_64, s1_24,
-cospi_20_64);
s1_25 = multiply_accumulate_shift_and_narrow_s16(s1_23, -cospi_20_64, s1_24,
cospi_12_64);
// stage 4
s1_0 = multiply_shift_and_narrow(in0, cospi_16_64);
s1_0 = multiply_shift_and_narrow_s16(in0, cospi_16_64);
s2_9 = multiply_accumulate_shift_and_narrow(s2_8, -cospi_8_64, s2_15,
cospi_24_64);
s2_14 = multiply_accumulate_shift_and_narrow(s2_8, cospi_24_64, s2_15,
cospi_8_64);
s2_9 = multiply_accumulate_shift_and_narrow_s16(s2_8, -cospi_8_64, s2_15,
cospi_24_64);
s2_14 = multiply_accumulate_shift_and_narrow_s16(s2_8, cospi_24_64, s2_15,
cospi_8_64);
s2_10 = multiply_accumulate_shift_and_narrow(s2_11, -cospi_24_64, s2_12,
-cospi_8_64);
s2_13 = multiply_accumulate_shift_and_narrow(s2_11, -cospi_8_64, s2_12,
cospi_24_64);
s2_10 = multiply_accumulate_shift_and_narrow_s16(s2_11, -cospi_24_64, s2_12,
-cospi_8_64);
s2_13 = multiply_accumulate_shift_and_narrow_s16(s2_11, -cospi_8_64, s2_12,
cospi_24_64);
s2_16 = vaddq_s16(s1_16, s1_19);
@ -504,8 +357,8 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
s2_31 = vaddq_s16(s1_28, s1_31);
// stage 5
s1_5 = sub_multiply_shift_and_narrow(s1_7, s1_4, cospi_16_64);
s1_6 = add_multiply_shift_and_narrow(s1_4, s1_7, cospi_16_64);
s1_5 = sub_multiply_shift_and_narrow_s16(s1_7, s1_4, cospi_16_64);
s1_6 = add_multiply_shift_and_narrow_s16(s1_4, s1_7, cospi_16_64);
s1_8 = vaddq_s16(s2_8, s2_11);
s1_9 = vaddq_s16(s2_9, s2_10);
@ -516,25 +369,25 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
s1_14 = vaddq_s16(s2_13, s2_14);
s1_15 = vaddq_s16(s2_12, s2_15);
s1_18 = multiply_accumulate_shift_and_narrow(s2_18, -cospi_8_64, s2_29,
cospi_24_64);
s1_29 = multiply_accumulate_shift_and_narrow(s2_18, cospi_24_64, s2_29,
cospi_8_64);
s1_18 = multiply_accumulate_shift_and_narrow_s16(s2_18, -cospi_8_64, s2_29,
cospi_24_64);
s1_29 = multiply_accumulate_shift_and_narrow_s16(s2_18, cospi_24_64, s2_29,
cospi_8_64);
s1_19 = multiply_accumulate_shift_and_narrow(s2_19, -cospi_8_64, s2_28,
cospi_24_64);
s1_28 = multiply_accumulate_shift_and_narrow(s2_19, cospi_24_64, s2_28,
cospi_8_64);
s1_19 = multiply_accumulate_shift_and_narrow_s16(s2_19, -cospi_8_64, s2_28,
cospi_24_64);
s1_28 = multiply_accumulate_shift_and_narrow_s16(s2_19, cospi_24_64, s2_28,
cospi_8_64);
s1_20 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_24_64, s2_27,
-cospi_8_64);
s1_27 = multiply_accumulate_shift_and_narrow(s2_20, -cospi_8_64, s2_27,
cospi_24_64);
s1_20 = multiply_accumulate_shift_and_narrow_s16(s2_20, -cospi_24_64, s2_27,
-cospi_8_64);
s1_27 = multiply_accumulate_shift_and_narrow_s16(s2_20, -cospi_8_64, s2_27,
cospi_24_64);
s1_21 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_24_64, s2_26,
-cospi_8_64);
s1_26 = multiply_accumulate_shift_and_narrow(s2_21, -cospi_8_64, s2_26,
cospi_24_64);
s1_21 = multiply_accumulate_shift_and_narrow_s16(s2_21, -cospi_24_64, s2_26,
-cospi_8_64);
s1_26 = multiply_accumulate_shift_and_narrow_s16(s2_21, -cospi_8_64, s2_26,
cospi_24_64);
// stage 6
s2_0 = vaddq_s16(s1_0, s1_7);
@ -546,11 +399,11 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
s2_6 = vsubq_s16(s1_0, s1_6);
s2_7 = vsubq_s16(s1_0, s1_7);
s2_10 = sub_multiply_shift_and_narrow(s1_13, s1_10, cospi_16_64);
s2_13 = add_multiply_shift_and_narrow(s1_10, s1_13, cospi_16_64);
s2_10 = sub_multiply_shift_and_narrow_s16(s1_13, s1_10, cospi_16_64);
s2_13 = add_multiply_shift_and_narrow_s16(s1_10, s1_13, cospi_16_64);
s2_11 = sub_multiply_shift_and_narrow(s1_12, s1_11, cospi_16_64);
s2_12 = add_multiply_shift_and_narrow(s1_11, s1_12, cospi_16_64);
s2_11 = sub_multiply_shift_and_narrow_s16(s1_12, s1_11, cospi_16_64);
s2_12 = add_multiply_shift_and_narrow_s16(s1_11, s1_12, cospi_16_64);
s1_16 = vaddq_s16(s2_16, s2_23);
s1_17 = vaddq_s16(s2_17, s2_22);
@ -588,17 +441,17 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
s1_14 = vsubq_s16(s2_1, s1_14);
s1_15 = vsubq_s16(s2_0, s1_15);
s1_20 = sub_multiply_shift_and_narrow(s3_27, s2_20, cospi_16_64);
s1_27 = add_multiply_shift_and_narrow(s2_20, s3_27, cospi_16_64);
s1_20 = sub_multiply_shift_and_narrow_s16(s3_27, s2_20, cospi_16_64);
s1_27 = add_multiply_shift_and_narrow_s16(s2_20, s3_27, cospi_16_64);
s1_21 = sub_multiply_shift_and_narrow(s3_26, s2_21, cospi_16_64);
s1_26 = add_multiply_shift_and_narrow(s2_21, s3_26, cospi_16_64);
s1_21 = sub_multiply_shift_and_narrow_s16(s3_26, s2_21, cospi_16_64);
s1_26 = add_multiply_shift_and_narrow_s16(s2_21, s3_26, cospi_16_64);
s2_22 = sub_multiply_shift_and_narrow(s3_25, s1_22, cospi_16_64);
s1_25 = add_multiply_shift_and_narrow(s1_22, s3_25, cospi_16_64);
s2_22 = sub_multiply_shift_and_narrow_s16(s3_25, s1_22, cospi_16_64);
s1_25 = add_multiply_shift_and_narrow_s16(s1_22, s3_25, cospi_16_64);
s2_23 = sub_multiply_shift_and_narrow(s3_24, s1_23, cospi_16_64);
s1_24 = add_multiply_shift_and_narrow(s1_23, s3_24, cospi_16_64);
s2_23 = sub_multiply_shift_and_narrow_s16(s3_24, s1_23, cospi_16_64);
s1_24 = add_multiply_shift_and_narrow_s16(s1_23, s3_24, cospi_16_64);
// final stage
out0 = vaddq_s16(s1_0, s2_31);
@ -610,7 +463,8 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
out6 = vaddq_s16(s1_6, s1_25);
out7 = vaddq_s16(s1_7, s1_24);
add_and_store(out0, out1, out2, out3, out4, out5, out6, out7, output, stride);
add_and_store_u8_s16(out0, out1, out2, out3, out4, out5, out6, out7, output,
stride);
out0 = vaddq_s16(s1_8, s2_23);
out1 = vaddq_s16(s1_9, s2_22);
@ -621,8 +475,8 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
out6 = vaddq_s16(s1_14, s1_17);
out7 = vaddq_s16(s1_15, s1_16);
add_and_store(out0, out1, out2, out3, out4, out5, out6, out7,
output + (8 * stride), stride);
add_and_store_u8_s16(out0, out1, out2, out3, out4, out5, out6, out7,
output + (8 * stride), stride);
out0 = vsubq_s16(s1_15, s1_16);
out1 = vsubq_s16(s1_14, s1_17);
@ -633,8 +487,8 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
out6 = vsubq_s16(s1_9, s2_22);
out7 = vsubq_s16(s1_8, s2_23);
add_and_store(out0, out1, out2, out3, out4, out5, out6, out7,
output + (16 * stride), stride);
add_and_store_u8_s16(out0, out1, out2, out3, out4, out5, out6, out7,
output + (16 * stride), stride);
out0 = vsubq_s16(s1_7, s1_24);
out1 = vsubq_s16(s1_6, s1_25);
@ -645,8 +499,8 @@ static void idct32_8_neon(const int16_t *input, uint8_t *output, int stride) {
out6 = vsubq_s16(s1_1, s2_30);
out7 = vsubq_s16(s1_0, s2_31);
add_and_store(out0, out1, out2, out3, out4, out5, out6, out7,
output + (24 * stride), stride);
add_and_store_u8_s16(out0, out1, out2, out3, out4, out5, out6, out7,
output + (24 * stride), stride);
}
void vpx_idct32x32_34_add_neon(const int16_t *input, uint8_t *dest,

View File

@ -14,6 +14,7 @@
#include <arm_neon.h>
#include "./vpx_config.h"
#include "vpx_dsp/arm/transpose_neon.h"
#include "vpx_dsp/vpx_dsp_common.h"
//------------------------------------------------------------------------------
@ -31,4 +32,141 @@ static INLINE int16x8_t load_tran_low_to_s16(const tran_low_t *buf) {
#endif
}
// Multiply a by a_const. Saturate, shift and narrow by 14.
static INLINE int16x8_t multiply_shift_and_narrow_s16(const int16x8_t a,
const int16_t a_const) {
// Shift by 14 + rounding will be within 16 bits for well formed streams.
// See WRAPLOW and dct_const_round_shift for details.
// This instruction doubles the result and returns the high half, essentially
// resulting in a right shift by 15. By multiplying the constant first that
// becomes a right shift by 14.
// The largest possible value used here is
// vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just*
// within the range of int16_t (+32767 / -32768) even when negated.
return vqrdmulhq_n_s16(a, a_const * 2);
}
// Add a and b, then multiply by ab_const. Shift and narrow by 14.
static INLINE int16x8_t add_multiply_shift_and_narrow_s16(
const int16x8_t a, const int16x8_t b, const int16_t ab_const) {
// In both add_ and it's pair, sub_, the input for well-formed streams will be
// well within 16 bits (input to the idct is the difference between two frames
// and will be within -255 to 255, or 9 bits)
// However, for inputs over about 25,000 (valid for int16_t, but not for idct
// input) this function can not use vaddq_s16.
// In order to match existing behavior and intentionally out of range tests,
// expand the addition up to 32 bits to prevent truncation.
int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b));
int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b));
temp_low = vmulq_n_s32(temp_low, ab_const);
temp_high = vmulq_n_s32(temp_high, ab_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
// Subtract b from a, then multiply by ab_const. Shift and narrow by 14.
static INLINE int16x8_t sub_multiply_shift_and_narrow_s16(
const int16x8_t a, const int16x8_t b, const int16_t ab_const) {
int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b));
int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b));
temp_low = vmulq_n_s32(temp_low, ab_const);
temp_high = vmulq_n_s32(temp_high, ab_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
// Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by
// 14.
static INLINE int16x8_t multiply_accumulate_shift_and_narrow_s16(
const int16x8_t a, const int16_t a_const, const int16x8_t b,
const int16_t b_const) {
int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const);
int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const);
temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const);
temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const);
return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}
static INLINE void load_and_transpose_s16_8x8(const int16_t *a, int a_stride,
int16x8_t *a0, int16x8_t *a1,
int16x8_t *a2, int16x8_t *a3,
int16x8_t *a4, int16x8_t *a5,
int16x8_t *a6, int16x8_t *a7) {
*a0 = vld1q_s16(a);
a += a_stride;
*a1 = vld1q_s16(a);
a += a_stride;
*a2 = vld1q_s16(a);
a += a_stride;
*a3 = vld1q_s16(a);
a += a_stride;
*a4 = vld1q_s16(a);
a += a_stride;
*a5 = vld1q_s16(a);
a += a_stride;
*a6 = vld1q_s16(a);
a += a_stride;
*a7 = vld1q_s16(a);
transpose_s16_8x8(a0, a1, a2, a3, a4, a5, a6, a7);
}
// Shift the output down by 6 and add it to the destination buffer.
static INLINE void add_and_store_u8_s16(const int16x8_t a0, const int16x8_t a1,
const int16x8_t a2, const int16x8_t a3,
const int16x8_t a4, const int16x8_t a5,
const int16x8_t a6, const int16x8_t a7,
uint8_t *b, const int b_stride) {
uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7;
int16x8_t c0, c1, c2, c3, c4, c5, c6, c7;
b0 = vld1_u8(b);
b += b_stride;
b1 = vld1_u8(b);
b += b_stride;
b2 = vld1_u8(b);
b += b_stride;
b3 = vld1_u8(b);
b += b_stride;
b4 = vld1_u8(b);
b += b_stride;
b5 = vld1_u8(b);
b += b_stride;
b6 = vld1_u8(b);
b += b_stride;
b7 = vld1_u8(b);
b -= (7 * b_stride);
// c = b + (a >> 6)
c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6);
c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6);
c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6);
c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6);
c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6);
c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6);
c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6);
c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6);
b0 = vqmovun_s16(c0);
b1 = vqmovun_s16(c1);
b2 = vqmovun_s16(c2);
b3 = vqmovun_s16(c3);
b4 = vqmovun_s16(c4);
b5 = vqmovun_s16(c5);
b6 = vqmovun_s16(c6);
b7 = vqmovun_s16(c7);
vst1_u8(b, b0);
b += b_stride;
vst1_u8(b, b1);
b += b_stride;
vst1_u8(b, b2);
b += b_stride;
vst1_u8(b, b3);
b += b_stride;
vst1_u8(b, b4);
b += b_stride;
vst1_u8(b, b5);
b += b_stride;
vst1_u8(b, b6);
b += b_stride;
vst1_u8(b, b7);
}
#endif // VPX_DSP_ARM_IDCT_NEON_H_