Enable 32x32 Transform unit test

This commit enabled a full functional test on 32x32 forward/inverse
transform, including round-trip error and memory overflow check. It
tests the prototype functions in C and all other implementations if
applicable.

Change-Id: I9cc50b05abdb4863e7abbcb29209a19b1fe90da7
This commit is contained in:
Jingning Han 2013-09-03 11:57:34 -07:00
parent 010c0ad0eb
commit 4ad52a8f18

View File

@ -13,15 +13,17 @@
#include <string.h> #include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h" #include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
extern "C" { extern "C" {
#include "./vpx_config.h"
#include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h" #include "./vp9_rtcd.h"
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch);
void vp9_short_idct32x32_add_c(short *input, uint8_t *output, int pitch);
} }
#include "test/acm_random.h"
#include "vpx/vpx_integer.h" #include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom; using libvpx_test::ACMRandom;
@ -36,29 +38,9 @@ static int round(double x) {
} }
#endif #endif
static const double kPi = 3.141592653589793238462643383279502884; const int kNumCoeffs = 1024;
static void reference2_32x32_idct_2d(double *input, double *output) { const double kPi = 3.141592653589793238462643383279502884;
double x; void reference_32x32_dct_1d(const double in[32], double out[32], int stride) {
for (int l = 0; l < 32; ++l) {
for (int k = 0; k < 32; ++k) {
double s = 0;
for (int i = 0; i < 32; ++i) {
for (int j = 0; j < 32; ++j) {
x = cos(kPi * j * (l + 0.5) / 32.0) *
cos(kPi * i * (k + 0.5) / 32.0) * input[i * 32 + j] / 1024;
if (i != 0)
x *= sqrt(2.0);
if (j != 0)
x *= sqrt(2.0);
s += x;
}
}
output[k * 32 + l] = s / 4;
}
}
}
static void reference_32x32_dct_1d(double in[32], double out[32], int stride) {
const double kInvSqrt2 = 0.707106781186547524400844362104; const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 32; k++) { for (int k = 0; k < 32; k++) {
out[k] = 0.0; out[k] = 0.0;
@ -69,7 +51,8 @@ static void reference_32x32_dct_1d(double in[32], double out[32], int stride) {
} }
} }
static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) { void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns // First transform columns
for (int i = 0; i < 32; ++i) { for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32]; double temp_in[32], temp_out[32];
@ -91,27 +74,165 @@ static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) {
} }
} }
TEST(VP9Idct32x32Test, AccuracyCheck) { typedef void (*fwd_txfm_t)(int16_t *in, int16_t *out, int stride);
ACMRandom rnd(ACMRandom::DeterministicSeed()); typedef void (*inv_txfm_t)(int16_t *in, uint8_t *dst, int stride);
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t in[1024], coeff[1024];
uint8_t dst[1024], src[1024];
double out_r[1024];
for (int j = 0; j < 1024; ++j) { class Trans32x32Test : public PARAMS(fwd_txfm_t, inv_txfm_t, int) {
public:
virtual ~Trans32x32Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
version_ = GET_PARAM(2); // 0: high precision forward transform
// 1: low precision version for rd loop
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int version_;
fwd_txfm_t fwd_txfm_;
inv_txfm_t inv_txfm_;
};
TEST_P(Trans32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8(); src[j] = rnd.Rand8();
dst[j] = rnd.Rand8(); dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
} }
const int pitch = 64;
REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, pitch));
REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
if (version_ == 1) {
max_error /= 2;
total_error /= 45;
}
EXPECT_GE(1u, max_error)
<< "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
EXPECT_GE(count_test_block, total_error)
<< "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
}
TEST_P(Trans32x32Test, CoeffCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = rnd.Rand8() - rnd.Rand8();
const int pitch = 64;
vp9_short_fdct32x32_c(input_block, output_ref_block, pitch);
REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, pitch));
if (version_ == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
}
}
TEST_P(Trans32x32Test, MemCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 2000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255]. // Initialize a test block with input range [-255, 255].
for (int j = 0; j < 1024; ++j) for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
if (i == 1)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = -255;
const int pitch = 64;
vp9_short_fdct32x32_c(input_extreme_block, output_ref_block, pitch);
REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, pitch));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
if (version_ == 0) {
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j]))
<< "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than "
<< "4*DCT_MAX_VALUE";
}
}
}
TEST_P(Trans32x32Test, InverseAccuracy) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255]
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j]; in[j] = src[j] - dst[j];
}
reference_32x32_dct_2d(in, out_r); reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < 1024; j++) for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = round(out_r[j]); coeff[j] = round(out_r[j]);
vp9_short_idct32x32_add_c(coeff, dst, 32); REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
for (int j = 0; j < 1024; ++j) { for (int j = 0; j < kNumCoeffs; ++j) {
const int diff = dst[j] - src[j]; const int diff = dst[j] - src[j];
const int error = diff * diff; const int error = diff * diff;
EXPECT_GE(1, error) EXPECT_GE(1, error)
@ -121,72 +242,21 @@ TEST(VP9Idct32x32Test, AccuracyCheck) {
} }
} }
TEST(VP9Fdct32x32Test, AccuracyCheck) { using std::tr1::make_tuple;
ACMRandom rnd(ACMRandom::DeterministicSeed());
unsigned int max_error = 0;
int64_t total_error = 0;
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t test_input_block[1024];
int16_t test_temp_block[1024];
uint8_t dst[1024], src[1024];
for (int j = 0; j < 1024; ++j) { INSTANTIATE_TEST_CASE_P(
src[j] = rnd.Rand8(); C, Trans32x32Test,
dst[j] = rnd.Rand8(); ::testing::Values(
} make_tuple(&vp9_short_fdct32x32_c, &vp9_short_idct32x32_add_c, 0),
// Initialize a test block with input range [-255, 255]. make_tuple(&vp9_short_fdct32x32_rd_c, &vp9_short_idct32x32_add_c, 1)));
for (int j = 0; j < 1024; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 64; #if HAVE_SSE2
vp9_short_fdct32x32_c(test_input_block, test_temp_block, pitch); INSTANTIATE_TEST_CASE_P(
vp9_short_idct32x32_add_c(test_temp_block, dst, 32); SSE2, Trans32x32Test,
::testing::Values(
for (int j = 0; j < 1024; ++j) { make_tuple(&vp9_short_fdct32x32_sse2,
const unsigned diff = dst[j] - src[j]; &vp9_short_idct32x32_add_sse2, 0),
const unsigned error = diff * diff; make_tuple(&vp9_short_fdct32x32_rd_sse2,
if (max_error < error) &vp9_short_idct32x32_add_sse2, 1)));
max_error = error; #endif
total_error += error;
}
}
EXPECT_GE(1u, max_error)
<< "Error: 32x32 FDCT/IDCT has an individual roundtrip error > 1";
EXPECT_GE(count_test_block, total_error)
<< "Error: 32x32 FDCT/IDCT has average roundtrip error > 1 per block";
}
TEST(VP9Fdct32x32Test, CoeffSizeCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t input_block[1024], input_extreme_block[1024];
int16_t output_block[1024], output_extreme_block[1024];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 1024; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < 1024; ++j)
input_extreme_block[j] = 255;
const int pitch = 64;
vp9_short_fdct32x32_c(input_block, output_block, pitch);
vp9_short_fdct32x32_c(input_extreme_block, output_extreme_block, pitch);
// The minimum quant value is 4.
for (int j = 0; j < 1024; ++j) {
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
<< "Error: 32x32 FDCT extreme has coefficient larger than "
"4*DCT_MAX_VALUE";
}
}
}
} // namespace } // namespace