Merge remote branch 'origin/master' into experimental
Change-Id: Ida9204624fe3fb99fed1b149d1f88159480fdd83
This commit is contained in:
commit
2614b77fcb
@ -18,6 +18,7 @@
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
#include "vpx/vpx_codec.h"
|
||||
#include "type_aliases.h"
|
||||
#include "vpx_scale/yv12config.h"
|
||||
#include "ppflags.h"
|
||||
|
@ -357,25 +357,11 @@ static int frame_max_bits(VP8_COMP *cpi)
|
||||
int max_bits;
|
||||
|
||||
// For CBR we need to also consider buffer fullness.
|
||||
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
|
||||
|
||||
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
|
||||
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
||||
|
||||
// If our buffer is below the optimum level
|
||||
if (buffer_fullness_ratio < 1.0)
|
||||
{
|
||||
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
|
||||
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
|
||||
|
||||
max_bits = (int)(max_bits * buffer_fullness_ratio);
|
||||
|
||||
if (max_bits < min_max_bits)
|
||||
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
|
||||
}
|
||||
max_bits = 2 * cpi->av_per_frame_bandwidth;
|
||||
max_bits -= cpi->buffered_av_per_frame_bandwidth;
|
||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
||||
}
|
||||
// VBR
|
||||
else
|
||||
@ -391,6 +377,45 @@ static int frame_max_bits(VP8_COMP *cpi)
|
||||
return max_bits;
|
||||
}
|
||||
|
||||
|
||||
static int gf_group_max_bits(VP8_COMP *cpi)
|
||||
{
|
||||
// Max allocation for a golden frame group
|
||||
int max_bits;
|
||||
|
||||
// For CBR we need to also consider buffer fullness.
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
max_bits = cpi->av_per_frame_bandwidth * cpi->baseline_gf_interval;
|
||||
if (max_bits > cpi->oxcf.optimal_buffer_level)
|
||||
{
|
||||
max_bits -= cpi->oxcf.optimal_buffer_level;
|
||||
max_bits += cpi->buffer_level;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_bits -= (cpi->buffered_av_per_frame_bandwidth
|
||||
- cpi->av_per_frame_bandwidth)
|
||||
* cpi->baseline_gf_interval;
|
||||
}
|
||||
|
||||
max_bits *= ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
||||
max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
||||
max_bits *= cpi->baseline_gf_interval;
|
||||
}
|
||||
|
||||
|
||||
// Trap case where we are out of bits
|
||||
if (max_bits < 0)
|
||||
max_bits = 0;
|
||||
|
||||
return max_bits;
|
||||
}
|
||||
|
||||
void vp8_init_first_pass(VP8_COMP *cpi)
|
||||
{
|
||||
zero_stats(cpi->twopass.total_stats);
|
||||
@ -1601,7 +1626,7 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
double abs_mv_in_out_accumulator = 0.0;
|
||||
double mod_err_per_mb_accumulator = 0.0;
|
||||
|
||||
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
||||
int max_group_bits;
|
||||
|
||||
unsigned int allow_alt_ref =
|
||||
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
||||
@ -1963,8 +1988,9 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
|
||||
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
||||
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
||||
if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
||||
cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
||||
max_group_bits = gf_group_max_bits(cpi);
|
||||
if (cpi->twopass.gf_group_bits > max_group_bits)
|
||||
cpi->twopass.gf_group_bits = max_group_bits;
|
||||
|
||||
// Reset the file position
|
||||
reset_fpf_position(cpi, start_pos);
|
||||
@ -2064,13 +2090,6 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an additional limit for CBR
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1))
|
||||
cpi->twopass.gf_bits = cpi->buffer_level >> 1;
|
||||
}
|
||||
|
||||
// Dont allow a negative value for gf_bits
|
||||
if (gf_bits < 0)
|
||||
gf_bits = 0;
|
||||
|
@ -1524,6 +1524,7 @@ static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
||||
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
||||
cpi->buffered_av_per_frame_bandwidth = cpi->av_per_frame_bandwidth;
|
||||
|
||||
cpi->total_actual_bits = 0;
|
||||
cpi->total_target_vs_actual = 0;
|
||||
@ -1619,7 +1620,7 @@ void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
||||
break;
|
||||
}
|
||||
|
||||
if (cpi->pass == 0)
|
||||
if (cpi->pass == 0 && cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER)
|
||||
cpi->auto_worst_q = 1;
|
||||
|
||||
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
||||
@ -3262,6 +3263,116 @@ void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
|
||||
|
||||
}
|
||||
|
||||
|
||||
static void update_buffer_level(VP8_COMP *cpi)
|
||||
{
|
||||
long long tmp;
|
||||
|
||||
/* Update the buffered average bitrate.
|
||||
*
|
||||
* The buffered average bitrate tracks the bitrate over the buffer
|
||||
* window. Here we simulate taking a frame of average size out
|
||||
* of the buffer, and putting in the new frame just encoded.
|
||||
* It is calculated accordingly:
|
||||
*
|
||||
* A = Average Bits Per Frame In The Buffer
|
||||
* P = New Frame Size
|
||||
* N = Number of bits in the buffer
|
||||
*
|
||||
* We recalculate the average as so:
|
||||
* (N-A)*A + A*P A * (N - A + P)
|
||||
* A' = ------------- = ---------------
|
||||
* N N
|
||||
*
|
||||
* This is modeled after a the standard algorithm for a moving
|
||||
* average with fixed weighting (eg A' = ((N-1)*A + 1*P) / N). This makes
|
||||
* the step response nonlinear but consistent with expected behavior --
|
||||
* when A is large, the model adapts more quickly, since there are
|
||||
* fewer frames in the buffer and conversely when A is small there
|
||||
* will be more frames in the buffer so the average will adapt
|
||||
* slowly.
|
||||
*
|
||||
* TODO(jkoleszar): This may give poor step response in some situations,
|
||||
* for example motion following a long static section. It might be
|
||||
* worth experimenting more with weighting by av_per_frame_bandwidth
|
||||
* rather than buffered_av_per_frame_bandwidth or using a more accurate
|
||||
* algorithm to get faster response. Current testing showed worse results
|
||||
* with that setting though.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Guard against buffered_av_per_frame_bandwidth falling to 0. Should
|
||||
* never happen, but without this check, it would be irrecoverable.
|
||||
*/
|
||||
if(cpi->buffered_av_per_frame_bandwidth == 0)
|
||||
cpi->buffered_av_per_frame_bandwidth = 1;
|
||||
|
||||
tmp = cpi->oxcf.maximum_buffer_size
|
||||
- cpi->buffered_av_per_frame_bandwidth
|
||||
+ cpi->projected_frame_size;
|
||||
tmp *= cpi->buffered_av_per_frame_bandwidth;
|
||||
cpi->buffered_av_per_frame_bandwidth = tmp
|
||||
/ cpi->oxcf.maximum_buffer_size;
|
||||
|
||||
if(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
||||
{
|
||||
/* In CBR mode, buffer level is synthesized from the buffered
|
||||
* average per-frame bandwidth to get the response characteristics
|
||||
* of that model, rather than using the unbounded (wrt buffer size)
|
||||
* bits_off_target. ie, the long term average bitrate doesn't
|
||||
* matter in CBR mode. If the clip is consistently undershooting
|
||||
* because it is very static, for example, you don't want to blow
|
||||
* your short term bitrate budget trying to the the long term spend
|
||||
* up to the target when you hit a motion section.
|
||||
*
|
||||
* Instead, the ratio of buffered_av_per_frame_bandwidth to the
|
||||
* target av_per_frame_bandwidth is taken, scaled by
|
||||
* maximum_buffer_size and centered around optimal_buffer_level,
|
||||
* which presents the expected behavior of buffer_level for the other
|
||||
* parts of the rate control code which handle the targeting.
|
||||
*
|
||||
* Note that this only happens after the starting_buffer_level
|
||||
* has passed, to give the model a chance to stabilize.
|
||||
*/
|
||||
if(cpi->total_actual_bits > cpi->oxcf.starting_buffer_level)
|
||||
{
|
||||
tmp = (long long)cpi->buffered_av_per_frame_bandwidth
|
||||
* cpi->oxcf.maximum_buffer_size
|
||||
/ cpi->av_per_frame_bandwidth;
|
||||
cpi->buffer_level = cpi->oxcf.maximum_buffer_size
|
||||
- tmp
|
||||
+ cpi->oxcf.optimal_buffer_level;
|
||||
}
|
||||
else
|
||||
cpi->buffer_level = cpi->oxcf.optimal_buffer_level;
|
||||
|
||||
/* Accumulate recent overshoot error.
|
||||
*
|
||||
* If this frame is larger than the target, then accumulate
|
||||
* that error to apply as a damping factor later. Only care about
|
||||
* recent overshoot, so this value decays by (N-P)/N
|
||||
*/
|
||||
if(cpi->total_actual_bits > cpi->oxcf.starting_buffer_level)
|
||||
{
|
||||
long long decayed_overshoot;
|
||||
|
||||
decayed_overshoot = cpi->accumulated_overshoot;
|
||||
decayed_overshoot *= (cpi->oxcf.maximum_buffer_size
|
||||
- cpi->projected_frame_size);
|
||||
decayed_overshoot /= cpi->oxcf.maximum_buffer_size;
|
||||
cpi->accumulated_overshoot = decayed_overshoot;
|
||||
|
||||
cpi->accumulated_overshoot +=
|
||||
(cpi->projected_frame_size > cpi->av_per_frame_bandwidth)
|
||||
? cpi->projected_frame_size - cpi->av_per_frame_bandwidth
|
||||
: 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
cpi->buffer_level = cpi->bits_off_target;
|
||||
}
|
||||
|
||||
|
||||
static void encode_frame_to_data_rate
|
||||
(
|
||||
VP8_COMP *cpi,
|
||||
@ -3507,7 +3618,8 @@ static void encode_frame_to_data_rate
|
||||
// For CBR if the buffer reaches its maximum level then we can no longer
|
||||
// save up bits for later frames so we might as well use them up
|
||||
// on the current frame.
|
||||
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
||||
if (cpi->pass == 2
|
||||
&& (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
||||
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
||||
{
|
||||
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
||||
@ -3598,6 +3710,10 @@ static void encode_frame_to_data_rate
|
||||
}
|
||||
else
|
||||
{
|
||||
if(cpi->pass != 2)
|
||||
Q = cpi->auto_worst_q?
|
||||
cpi->active_worst_quality:cpi->avg_frame_qindex;
|
||||
|
||||
cpi->active_best_quality = inter_minq[Q];
|
||||
|
||||
// For the constant/constrained quality mode we dont want
|
||||
@ -3910,15 +4026,17 @@ static void encode_frame_to_data_rate
|
||||
(cpi->active_worst_quality < cpi->worst_quality) &&
|
||||
(cpi->projected_frame_size > frame_over_shoot_limit))
|
||||
{
|
||||
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
|
||||
/* step down active_worst_quality such that the corresponding
|
||||
* active_best_quality will be equal to the current
|
||||
* active_worst_quality + 1. Once the limit on active_best_quality
|
||||
* is reached, active_worst_quality will equal worst_quality.
|
||||
*/
|
||||
int i;
|
||||
|
||||
// If so is there any scope for relaxing it
|
||||
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
|
||||
{
|
||||
cpi->active_worst_quality++;
|
||||
top_index = cpi->active_worst_quality;
|
||||
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
|
||||
}
|
||||
for(i=cpi->active_worst_quality; i<cpi->worst_quality; i++)
|
||||
if(inter_minq[i] >= cpi->active_worst_quality + 1)
|
||||
break;
|
||||
cpi->active_worst_quality = i;
|
||||
|
||||
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
||||
active_worst_qchanged = TRUE;
|
||||
@ -4306,10 +4424,9 @@ static void encode_frame_to_data_rate
|
||||
|
||||
// Update the buffer level variable.
|
||||
// Non-viewable frames are a special case and are treated as pure overhead.
|
||||
if ( !cm->show_frame )
|
||||
if ( cm->show_frame )
|
||||
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
||||
cpi->bits_off_target -= cpi->projected_frame_size;
|
||||
else
|
||||
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
||||
|
||||
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
||||
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
||||
@ -4323,7 +4440,7 @@ static void encode_frame_to_data_rate
|
||||
// Debug stats
|
||||
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
||||
|
||||
cpi->buffer_level = cpi->bits_off_target;
|
||||
update_buffer_level(cpi);
|
||||
|
||||
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
||||
if (cm->frame_type == KEY_FRAME)
|
||||
|
@ -348,6 +348,10 @@ typedef struct VP8_COMP
|
||||
int per_frame_bandwidth; // Current section per frame bandwidth target
|
||||
int av_per_frame_bandwidth; // Average frame size target for clip
|
||||
int min_frame_bandwidth; // Minimum allocation that should be used for any frame
|
||||
int buffered_av_per_frame_bandwidth; // Average bitrate over the last buffer
|
||||
int buffered_av_per_frame_bandwidth_rem; // Average bitrate remainder
|
||||
int accumulated_overshoot; // Accumulated # of bits spent > target
|
||||
|
||||
int inter_frame_target;
|
||||
double output_frame_rate;
|
||||
long long last_time_stamp_seen;
|
||||
|
@ -653,7 +653,7 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
int min_frame_target;
|
||||
int Adjustment;
|
||||
|
||||
min_frame_target = 0;
|
||||
min_frame_target = 1;
|
||||
|
||||
if (cpi->pass == 2)
|
||||
{
|
||||
@ -662,9 +662,11 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
||||
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
||||
}
|
||||
else if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
||||
else
|
||||
{
|
||||
if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
||||
min_frame_target = cpi->per_frame_bandwidth / 4;
|
||||
|
||||
}
|
||||
|
||||
// Special alt reference frame case
|
||||
if (cpi->common.refresh_alt_ref_frame)
|
||||
@ -1157,6 +1159,33 @@ static void calc_pframe_target_size(VP8_COMP *cpi)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (cpi->pass==0
|
||||
&& cpi->common.refresh_golden_frame
|
||||
&& cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
|
||||
long long adjust;
|
||||
|
||||
/*
|
||||
frames_in_buffer = cpi->oxcf.maximum_buffer_size
|
||||
/ cpi->av_per_frame_bandwidth;
|
||||
gf_in_buffer = frames_in_buffer /
|
||||
cpi->frames_till_gf_update_due;
|
||||
overshoot_per_gf = cpi->accumulated_overshoot / gf_in_buffer;
|
||||
|
||||
*/
|
||||
|
||||
adjust = cpi->accumulated_overshoot;
|
||||
adjust *= cpi->frames_till_gf_update_due + 1;
|
||||
adjust *= cpi->av_per_frame_bandwidth;
|
||||
adjust /= cpi->oxcf.maximum_buffer_size;
|
||||
|
||||
if (adjust > (cpi->this_frame_target - min_frame_target))
|
||||
adjust = (cpi->this_frame_target - min_frame_target);
|
||||
else if (adjust < 0)
|
||||
adjust = 0;
|
||||
|
||||
cpi->this_frame_target -= adjust;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -45,6 +45,7 @@
|
||||
#define VPX_CODEC_INTERNAL_H
|
||||
#include "../vpx_decoder.h"
|
||||
#include "../vpx_encoder.h"
|
||||
#include "vpx_config.h"
|
||||
#include <stdarg.h>
|
||||
|
||||
|
||||
@ -435,6 +436,23 @@ vpx_codec_pkt_list_get(struct vpx_codec_pkt_list *list,
|
||||
|
||||
#include <stdio.h>
|
||||
#include <setjmp.h>
|
||||
|
||||
/* GLIBC started intercepting calls to longjmp in version 2.11, if the
|
||||
* FORTIFY_SOURCE flag is defined (it's defined by default on Ubuntu).
|
||||
* This can cause problems running under older versions of GLIBC (ie,
|
||||
* for binary distributions), so work around it by linking to the
|
||||
* underlying longjmp call directly.
|
||||
*/
|
||||
#if defined(__GNUC_PREREQ)
|
||||
#if __GNUC_PREREQ (2,11)
|
||||
#if ARCH_X86_64
|
||||
__asm__(".symver __longjmp_chk,longjmp@GLIBC_2.2.5");
|
||||
#else
|
||||
__asm__(".symver __longjmp_chk,longjmp@GLIBC_2.0");
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
struct vpx_internal_error_info
|
||||
{
|
||||
vpx_codec_err_t error_code;
|
||||
|
5
vpxenc.c
5
vpxenc.c
@ -1339,6 +1339,11 @@ static void init_rate_histogram(struct rate_hist *hist,
|
||||
* adjustment (5/4) to account for alt-refs
|
||||
*/
|
||||
hist->samples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000;
|
||||
|
||||
// prevent division by zero
|
||||
if (hist->samples == 0)
|
||||
hist->samples=1;
|
||||
|
||||
hist->pts = calloc(hist->samples, sizeof(*hist->pts));
|
||||
hist->sz = calloc(hist->samples, sizeof(*hist->sz));
|
||||
for(i=0; i<RATE_BINS; i++)
|
||||
|
Loading…
x
Reference in New Issue
Block a user